
Simulink® Code Inspector™

Reference

R2012b

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Simulink® Code Inspector™ Reference
© COPYRIGHT 2011–2012 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
September 2011 Online only New for Version 1.0 (Release 2011b)
March 2012 Online only Revised for Version 1.1 (Release 2012a)
September 2012 Online only Revised for Version 1.2 (Release 2012b)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Function Reference

1
Code Inspection . 1-2

Model Compatibility Checking . 1-4

Class Reference

2
Code Inspection . 2-2

Functions — Alphabetical List

3

Model Configuration Constraints

4
About Model Configuration Constraints 4-2

Simulink Configuration Parameter Constraints 4-4
Solver . 4-5
Data Import/Export . 4-5
Optimization . 4-5
Optimization: Signals and Parameters 4-7
Diagnostics: Data Validity . 4-8
Diagnostics: Connectivity . 4-9
Diagnostics: Model Referencing . 4-9

iii

Hardware Implementation . 4-10
Code Generation: General . 4-11
Code Generation: Comments . 4-12
Code Generation: Symbols . 4-12
Code Generation: Custom Code . 4-13
Code Generation: Interface . 4-13
Code Generation: Verification . 4-16
Code Generation: Code Style . 4-16
Code Generation: Data Type Replacement 4-16
Code Generation: Not in GUI . 4-17

Other Modelwide Attribute Constraints 4-18

Supported Functions and Operations in Code
Replacement Libraries . 4-22

Block Constraints

5
About Block Constraints . 5-2

Block Constraints — Alphabetical List 5-5
All Blocks . 5-7
Abs . 5-8
Action Port . 5-9
Bitwise Operator . 5-9
Bus Assignment . 5-10
Bus Creator . 5-10
Bus Selector . 5-11
Constant . 5-11
Data Store Memory . 5-12
Data Store Read . 5-13
Data Store Write . 5-14
Data Type Conversion . 5-15
Data Type Duplicate . 5-15
Data Type Propagation . 5-16
Discrete-Time Integrator . 5-16
Demux . 5-18
DocBlock . 5-18

iv Contents

Enable Port . 5-18
From . 5-19
Function-Call Generator . 5-19
Gain . 5-20
Goto . 5-21
Ground . 5-21
If . 5-21
Inport . 5-22
Logical Operator . 5-23
1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1
or 2-D) . 5-23

Math Function . 5-26
Merge . 5-27
MinMax . 5-27
Model . 5-28
Model Info . 5-28
Multiport Switch . 5-28
Mux . 5-29
Outport . 5-30
Probe . 5-30
Product . 5-31
Relational Operator . 5-33
Reshape . 5-33
Rounding Function . 5-34
Saturation . 5-34
Selector . 5-35
S-Function . 5-35
Shift Arithmetic . 5-37
Sign . 5-38
Signal Conversion . 5-38
Signal Specification . 5-38
Sqrt . 5-39
Stateflow . 5-40
Subsystems . 5-43
Sum, Add, Subtract . 5-44
Switch . 5-45
Switch Case . 5-45
Terminator . 5-46
Trigger . 5-46
Trigonometric Function . 5-47
Unit Delay . 5-48
Vector Concatenate . 5-48

Supported Blocks — By Category 5-49

v

Commonly Used Blocks . 5-49
Discontinuity Blocks . 5-50
Discrete Blocks . 5-50
Logic and Bit Operation Blocks . 5-50
Lookup Tables . 5-50
Math Operation Blocks . 5-51
Model-Wide Utilities . 5-51
Port & Subsystem Blocks . 5-51
Signal Attribute Blocks . 5-52
Signal Routing Blocks . 5-52
Sink Blocks . 5-53
Source Blocks . 5-53
User-Defined Functions . 5-53

Model Advisor Checks

6
Simulink Code Inspector Checks . 6-2
Simulink Code Inspector Checks Overview 6-4
Check code generation settings . 6-5
Check data import/export settings . 6-10
Check diagnostic settings . 6-11
Check hardware implementation settings 6-13
Check optimization settings . 6-15
Check solver settings . 6-18
Check for unconnected objects in the model 6-19
Check system target file setting . 6-20
Check function specification setting 6-21
Check for Stateflow machine data . 6-22
Check for Stateflow machine events 6-23
Check conditional input branch execution setting 6-24
Check for unsupported blocks . 6-25
Check storage class for workspace variables 6-26
Check for sample times in the model 6-27
Check for Signal Conversion blocks automatically inserted
on signals entering block input ports 6-28

Check for usage of fixed-point instrumentation 6-29
Check for root Outport blocks being conditionally
assigned . 6-30

Check for usage of synthesized local data stores 6-31
Check loop unrolling threshold setting 6-31

vi Contents

Check usage of global data stores . 6-33
Check destinations of If and Switchcase blocks 6-34
Check for root Outport blocks that have non-auto storage
class . 6-35

Check usage of Sources blocks . 6-35
Check usage of Signal Routing blocks 6-40
Check usage of Math Operations blocks 6-59
Check usage of Signal Attributes blocks 6-74
Check usage of Logical and Bit Operations blocks 6-80
Check usage of Lookup Tables blocks 6-86
Check usage of User-Defined Function blocks 6-90
Check usage of Ports and Subsystems blocks 6-92
Check usage of Discontinuities blocks 6-103
Check usage of Sinks blocks . 6-106
Check usage of Discrete blocks . 6-110
Check usage of Stateflow blocks . 6-115
Check usage of Stateflow charts . 6-117
Check usage of Stateflow transitions 6-119
Check usage of Stateflow junctions 6-121
Check usage of Stateflow data . 6-122
Check usage of Stateflow events . 6-124
Check usage of root Outport blocks 6-125
Check usage of buses . 6-126

Simulink Code Inspector Dialog Box Parameters

7
Simulink Code Inspector Dialog Box 7-2
Simulink Code Inspector Dialog Box Overview 7-4
This is the top of the model hierarchy 7-5
Inspect all referenced models . 7-6
Omit model from code inspection if it fails compatibility
check . 7-7

Generate code before code inspection 7-8
Code placement . 7-9
Code folder . 7-10
Report folder . 7-11

vii

viii Contents

1

Function Reference

Code Inspection (p. 1-2) Inspect code generated from a model

Model Compatibility Checking
(p. 1-4)

Prepare for code inspection

1 Function Reference

Code Inspection

getCodeFolder (slci.Configuration) Return code folder for code inspection

getCodePlacement
(slci.Configuration)

Return code placement for code
inspection

getFollowModelLinks
(slci.Configuration)

Return model reference handling for
model compatibility checking or code
inspection

getGenerateCode
(slci.Configuration)

Return code generation option for
code inspection

getReportFolder (slci.Configuration) Return report folder for code
inspection

getTerminateOnIncompatibility
(slci.Configuration)

Return termination option for code
inspection

getTopModel (slci.Configuration) Return top-model attribute for code
inspection

inspect (slci.Configuration) Inspect code generated from model

setCodeFolder (slci.Configuration) Specify code folder for code inspection

setCodePlacement
(slci.Configuration)

Specify code placement for code
inspection

setFollowModelLinks
(slci.Configuration)

Specify model reference handling for
model compatibility checking or code
inspection

setGenerateCode
(slci.Configuration)

Specify whether to generate code
before code inspection

setReportFolder (slci.Configuration) Specify report folder for code
inspection

setTerminateOnIncompatibility
(slci.Configuration)

Specify whether to terminate code
inspection if model is incompatible

setTopModel (slci.Configuration) Specify whether model being
configured for code inspection is top
model

1-2

Code Inspection

slci.Configuration Create code inspection object

slci.ExportTraceReport Generate XLS file that contains
traceability matrix

1-3

1 Function Reference

Model Compatibility Checking

checkCompatibility
(slci.Configuration)

Check model compatibility with code
inspection

getFollowModelLinks
(slci.Configuration)

Return model reference handling for
model compatibility checking or code
inspection

setFollowModelLinks
(slci.Configuration)

Specify model reference handling for
model compatibility checking or code
inspection

slci.Configuration Create code inspection object

slciadvisor Open Simulink® Code Inspector™
Advisor

1-4

2

Class Reference

2 Class Reference

Code Inspection

slci.Configuration Control code inspection and
compatibility checking for model

2-2

3

Functions — Alphabetical
List

slci.Configuration.checkCompatibility

Purpose Check model compatibility with code inspection

Syntax [results] = checkCompatibility(cfgObj)
[results] = checkCompatibility(cfgObj, Name, Value)

Description [results] = checkCompatibility(cfgObj) checks a model for
compatibility with the code inspection process and returns objects
containing results information.

[results] = checkCompatibility(cfgObj, Name, Value)
additionally applies the settings specified in name-value pair
arguments.

This method runs the Simulink Code Inspector compatibility checker
to determine if a model complies with the constrained set of modeling
semantics and code optimizations supported by the code inspection
process.

You can use the methods slci.Configuration.getFollowModelLinks
and slci.Configuration.setFollowModelLinks to configure whether
the scope of the compatibility check encompasses referenced models.

Tips Before running the Code Inspector on a model, run compatibility checks
repeatedly until the model is compatible.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

3-2

slci.Configuration.checkCompatibility

DisplayResults

Specify whether to display results of the compatibility checks.

Value Description

'Summary' (default) Displays a summary of the
model results in the Command
Window.

'Details' Displays the following in the
Command Window:
• Which system is being
checked while the run is in
progress

• For each system, the pass
and fail results of each
check.

• A summary of the system
results.

'None' Displays no information in the
Command Window.

Default: `Summary'

Output
Arguments

results Cell array of ModelAdvisor.SystemResult
objects, one for each model checked. Each
ModelAdvisor.SystemResult object contains
an array of CheckResultObj objects.

CheckResultObj Array of ModelAdvisor.CheckResult objects,
one for each check that runs.

Examples This example shows how to programmatically run the compatibility
checker and report results.

3-3

slci.Configuration.checkCompatibility

fprintf('\nInvoking compatibility checker ...\n');

config = slci.Configuration('slcidemo_roll');

result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)

fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...

result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

Alternatives Open the Simulink Code Inspector dialog box from Code menu of the
model window and use the dialog box to configure and run model
compatibility checks.

See Also slci.Configuration.getFollowModelLinks |
slci.Configuration.setFollowModelLinks

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-4

slci.Configuration.getCodeFolder

Purpose Return code folder for code inspection

Syntax folder = getCodeFolder(cfgObj)

Description folder = getCodeFolder(cfgObj) returns the path to a code folder,
as previously specified using slci.Configuration.setCodeFolder.
Use this method only if you are inspecting previously generated code
that has been repackaged to reside in a single, user-defined folder, as
specified using slci.Configuration.setCodePlacement.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

folder String specifying a folder path or, if you have
not previously set a code folder value, ''
(default).

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

3-5

slci.Configuration.getCodeFolder

See Also slci.Configuration.setCodeFolder |
slci.Configuration.setCodePlacement

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-6

slci.Configuration.getCodePlacement

Purpose Return code placement for code inspection

Syntax value = getCodePlacement(cfgObj)

Description value = getCodePlacement(cfgObj) returns the value of a code
inspection option that specifies whether generated code has been
repackaged to reside in a single, user-defined folder. The value is
meaningful only if you are inspecting previously generated code.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value String specifying one of the following values:
• Single folder if the generated code has
been repackaged to reside in a single,
user-defined folder.

• Embedded Coder default (default) if the
generated code resides in the default folders
created by code generation.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

3-7

slci.Configuration.getCodePlacement

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setCodePlacement |
slci.Configuration.setCodeFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-8

slci.Configuration.getFollowModelLinks

Purpose Return model reference handling for model compatibility checking or
code inspection

Syntax value = getFollowModelLinks(cfgObj)

Description value = getFollowModelLinks(cfgObj) returns the value of a code
inspection option that specifies whether model compatibility checking
and code inspection should be performed for every descendant of this
model in the model reference hierarchy.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if model compatibility checking and
code inspection should be performed for
every descendant of this model in the model
reference hierarchy; false otherwise. The
default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setFollowModelLinks(true)

>> value = config.getFollowModelLinks()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of the
model window and use the dialog box to configure and run model
compatibility checking and code inspection.

See Also slci.Configuration.setFollowModelLinks

3-9

slci.Configuration.getFollowModelLinks

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-10

slci.Configuration.getGenerateCode

Purpose Return code generation option for code inspection

Syntax value = getGenerateCode(cfgObj)

Description value = getGenerateCode(cfgObj) returns the value of a code
inspection option that specifies whether to generate model code as part
of code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if model code should be generated at the
beginning of code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setGenerateCode(true)

>> value = config.getGenerateCode()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setGenerateCode

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-11

slci.Configuration.getReportFolder

Purpose Return report folder for code inspection

Syntax folder = getReportFolder(cfgObj)

Description folder = getReportFolder(cfgObj) returns the path to a folder in
which code inspection places code inspection report artifacts.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

folder String specifying a folder path. If you have
not previously set a report folder value, the
default is slprj/slci, relative to the location
of the model.

Examples >> pwd

ans =

C:\work

>> config = slci.Configuration('mymodel');

>> folder = config.getReportFolder()

folder =

C:\work\slprj\slci

>> config.setReportFolder(fullfile('C:','work','mymodel_report'));

>> folder = config.getReportFolder()

folder =

C:\work\mymodel_report

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

3-12

slci.Configuration.getReportFolder

See Also slci.Configuration.setReportFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-13

slci.Configuration.getTerminateOnIncompatibility

Purpose Return termination option for code inspection

Syntax value = getTerminateOnIncompatibility(cfgObj)

Description value = getTerminateOnIncompatibility(cfgObj) returns the
value of a code inspection option that specifies whether code inspection
terminates if a model fails compatibility checking. If termination is
selected, model code generation (if requested) also does not occur.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if code inspection should terminate if a
model fails code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setTerminateOnIncompatibility(true)

>> value = config.getTerminateOnIncompatibility()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setTerminateOnIncompatibility |
slci.Configuration.checkCompatibility

How To • “Check Model Compatibility Using the Graphical User Interface”

3-14

slci.Configuration.getTerminateOnIncompatibility

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-15

slci.Configuration.getTopModel

Purpose Return top-model attribute for code inspection

Syntax value = getTopModel(cfgObj)

Description value = getTopModel(cfgObj) returns the value of a code inspection
attribute that specifies whether the model being configured for code
inspection is the top model in the model reference hierarchy. If the
model is not the top model, code inspection (and code generation if
requested) uses a model reference target rather than a top model target..

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Output
Arguments

value True if the model being configured for code
inspection is the top model in the model
reference hierarchy; false otherwise. The
default is true.

Examples The following example configures code inspection to use a model
reference target.

>> config = slci.Configuration('slcidemo_roll');

>> config.setTopModel(false)

>> value = config.getTopModel()

value =

0

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

3-16

slci.Configuration.getTopModel

See Also slci.Configuration.setTopModel

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-17

slci.Configuration.inspect

Purpose Inspect code generated from model

Syntax results = inspect(cfgObj)
results = inspect(cfgObj, Name, Value)

Description results = inspect(cfgObj) executes the code inspection process per
code inspection configuration parameters and creates and displays
a code inspection report.

results = inspect(cfgObj, Name, Value) additionally applies the
settings specified in name-value pair arguments.

Tips Before inspecting code generated from a model, run
slci.Configuration.checkCompatibility repeatedly,
modifying the model, until the model is compatible with code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

Name-Value Pair Arguments

Specify optional comma-separated pairs of Name,Value arguments,
where Name is the argument name and Value is the corresponding
value. Name must appear inside single quotes (' '). You can
specify several name and value pair arguments in any order as
Name1,Value1,...,NameN,ValueN.

DisplayResults

Specify whether to display inspection results.

3-18

slci.Configuration.inspect

Value Description

'Summary' (default) Displays a summary of the
model results in the Command
Window.

'Details' Displays the following in the
Command Window:
• Which system is being
inspected while the run is
in progress

• For each system, the pass
and fail results of each
inspection.

• A summary of the system
results.

'None' Displays no information in the
Command Window.

Default: `Summary'

Output
Arguments

results Structure containing the following fields:
• ModelName: String specifying the name of
the model for which code was inspected.

• Status: String specifying the status
returned by code inspection.

• ReportFile: String specifying the folder
containing the code inspection report.

Examples This example shows how to programmatically run the Code Inspector
and report results. The model is assumed to have previously passed
compatibility checks (see slci.Configuration.checkCompatibility).

3-19

slci.Configuration.inspect

config = slci.Configuration('slcidemo_roll');

config.setReportFolder(fullfile('.','report'));

result = config.inspect();

fprintf('Model %s status: %s\n',result.ModelName, result.Status);

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.checkCompatibility

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-20

slci.Configuration.setCodeFolder

Purpose Specify code folder for code inspection

Syntax setCodeFolder(cfgObj, folder)

Description setCodeFolder(cfgObj, folder) specifies the path to a folder
containing previously generated code to be inspected. Use this
method only if you are inspecting generated code that has been
repackaged to reside in a single, user-defined folder, as specified using
slci.Configuration.setCodePlacement.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

folder String specifying a folder path.

Examples In the following example, you call
slci.Configuration.setCodePlacement to specify that generated
code has been repackaged to reside in a single folder, and then call
slci.Configuration.setCodeFolder to specify the folder path.

>> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

3-21

slci.Configuration.setCodeFolder

See Also slci.Configuration.setCodePlacement |
slci.Configuration.getCodeFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-22

slci.Configuration.setCodePlacement

Purpose Specify code placement for code inspection

Syntax setCodePlacement(cfgObj, codePlacement)

Description setCodePlacement(cfgObj, codePlacement) specifies whether
previously generated code retains the default folder structure
for generated code, or has been repackaged to reside in a single,
user-defined folder.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

codePlacement String specifying one of the following values:
• Single folder if the generated code has
been repackaged to reside in a single,
user-defined folder.

• Embedded Coder default (default) if the
generated code resides in the default folders
created by code generation.

Examples In the following example, you call
slci.Configuration.setCodePlacement to specify that generated
code has been repackaged to reside in a single folder, and then call
slci.Configuration.setCodeFolder to specify the folder path.

>> config = slci.Configuration('slcidemo_roll');

>> config.setCodePlacement('Single folder')

>> config.setCodeFolder(fullfile('C:','packngo','model1'))

>> pkg = config.getCodePlacement()

pkg =

Single folder

>> folder = config.getCodeFolder()

folder =

3-23

slci.Configuration.setCodePlacement

C:\packngo\model1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.setCodeFolder |
slci.Configuration.getCodePlacement

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-24

slci.Configuration.setFollowModelLinks

Purpose Specify model reference handling for model compatibility checking or
code inspection

Syntax setFollowModelLinks(cfgObj, followModelLinks)

Description setFollowModelLinks(cfgObj, followModelLinks) specifies whether
model compatibility checking and code inspection should be performed
for every descendant of this model in the model reference hierarchy.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

followModelLinks True if model compatibility checking and
code inspection should be performed for
every descendant of this model in the model
reference hierarchy; false otherwise. The
default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setFollowModelLinks(true)

>> value = config.getFollowModelLinks()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getFollowModelLinks

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

3-25

slci.Configuration.setFollowModelLinks

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-26

slci.Configuration.setGenerateCode

Purpose Specify whether to generate code before code inspection

Syntax setGenerateCode(cfgObj, generateCode)

Description setGenerateCode(cfgObj, generateCode) specifies whether to
generate model code as part of code inspection.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

generateCode True if model code should be generated at the
beginning of code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setGenerateCode(true)

>> value = config.getGenerateCode()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getGenerateCode

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-27

slci.Configuration.setReportFolder

Purpose Specify report folder for code inspection

Syntax setReportFolder(cfgObj, folder)

Description setReportFolder(cfgObj, folder) specifies a folder in which code
inspection should place code inspection report artifacts.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

folder String specifying a folder path. If you have
not previously set a report folder value, the
default is slprj/slci, relative to the location
of the model.

Examples >> pwd

ans =

C:\work

>> config = slci.Configuration('mymodel');

>> folder = config.getReportFolder()

folder =

C:\work\slprj\slci

>> config.setReportFolder(fullfile('C:','work','mymodel_report'))

>> folder = config.getReportFolder()

folder =

C:\work\mymodel_report

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getReportFolder

3-28

slci.Configuration.setReportFolder

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-29

slci.Configuration.setTerminateOnIncompatibility

Purpose Specify whether to terminate code inspection if model is incompatible

Syntax setTerminateOnIncompatibility(cfgObj, terminate)

Description setTerminateOnIncompatibility(cfgObj, terminate) specifies
whether code inspection terminates if a model fails compatibility
checking. If termination is selected, model code generation (if requested)
also does not occur.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

terminate True if code inspection should terminate if a
model fails code inspection; false otherwise.
The default is false.

Examples >> config = slci.Configuration('slcidemo_roll');

>> config.setTerminateOnIncompatibility(true)

>> value = config.getTerminateOnIncompatibility()

value =

1

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getTerminateOnIncompatibility |
slci.Configuration.checkCompatibility

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

3-30

slci.Configuration.setTerminateOnIncompatibility

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-31

slci.Configuration.setTopModel

Purpose Specify whether model being configured for code inspection is top model

Syntax setTopModel(cfgObj, top)

Description setTopModel(cfgObj, top) specifies whether the model being
configured for code inspection is the top model in the model reference
hierarchy. If the model is not the top model, code inspection (and code
generation if requested) uses a model reference target rather than
a top model target.

Input
Arguments

cfgObj Handle to a Simulink Code
Inspector configuration object
previously returned by cfgObj =
slci.Configuration(modelName);.

top True if the model being configured for code
inspection is the top model in the model
reference hierarchy; false otherwise. The
default is true.

Examples The following example configures code inspection to use a model
reference target.

>> config = slci.Configuration('slcidemo_roll');

>> config.setTopModel(false)

>> value = config.getTopModel()

value =

0

>>

Alternatives Open the Simulink Code Inspector dialog box from Code menu of
the model window and use the dialog box to configure and run code
inspection.

See Also slci.Configuration.getTopModel

3-32

slci.Configuration.setTopModel

How To • “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-33

slci.Configuration

Purpose Control code inspection and compatibility checking for model

Description An slci.Configuration object configures code inspection and
compatibility checking for a model.

Construction slci.Configuration Create code inspection object

Methods checkCompatibility Check model compatibility with
code inspection

getCodeFolder Return code folder for code
inspection

getCodePlacement Return code placement for code
inspection

getFollowModelLinks Return model reference handling
for model compatibility checking
or code inspection

getGenerateCode Return code generation option for
code inspection

getReportFolder Return report folder for code
inspection

getTerminateOnIncompatibility Return termination option for
code inspection

getTopModel Return top-model attribute for
code inspection

inspect Inspect code generated from
model

setCodeFolder Specify code folder for code
inspection

3-34

slci.Configuration

setCodePlacement Specify code placement for code
inspection

setFollowModelLinks Specify model reference handling
for model compatibility checking
or code inspection

setGenerateCode Specify whether to generate code
before code inspection

setReportFolder Specify report folder for code
inspection

setTerminateOnIncompatibility Specify whether to terminate
code inspection if model is
incompatible

setTopModel Specify whether model being
configured for code inspection is
top model

Copy
Semantics

Handle. To learn how this affects your use of the class, see Copying
Objects in the MATLAB® Programming Fundamentals documentation.

Examples The Simulink Code Inspector example slcidemo_intro shows how to
programmatically run the compatibility checker and the Code Inspector
and report results. The example also illustrates reporting of an error
that is purposely introduced into the generated code.

See also the reference pages for
slci.Configuration.checkCompatibility,
slci.Configuration.inspect, and other slci.Configuration
methods for individual call examples.

Alternatives Open the Simulink Code Inspector dialog box from Tools menu of
the model window and use the dialog box to configure and run model
compatibility checks and code inspection.

How To • “Check Model Compatibility Using the Graphical User Interface”

3-35

slci.Configuration

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

3-36

slci.Configuration

Purpose Create code inspection object

Syntax cfgObj = slci.Configuration(modelName)

Description cfgObj = slci.Configuration(modelName) creates an object of class
slci.Configuration and returns a handle to it.

Input
Arguments

modelName Name of the model for which you are
configuring code inspection and compatibility
checking.

Output
Arguments

cfgObj Handle to code inspection object.

Examples This example creates a code inspection object, config, and uses it to
check the specified model for compatibility with code inspection.

config = slci.Configuration('slcidemo_roll');

result = config.checkCompatibility('DisplayResults','None');

for i = 1:length(result)

fprintf('\nModel ''%s'' passed %d checks with %d issues.',...

result{i}.system,...

result{i}.numPass, result{i}.numWarn + result{i}.numFail)

end

Alternatives Open the Simulink Code Inspector dialog box from Code menu of the
model window and use the dialog box to configure and run model
compatibility checks and code inspection.

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

3-37

slci.Configuration

• “Inspect Code Using the Command-Line Interface”

3-38

slci.ExportTraceReport

Purpose Generate XLS file that contains traceability matrix

Syntax slci.ExportTraceReport('model_name')
slci.ExportTraceReport('model_name', 'file_name')
slci.ExportTraceReport('model_name', 'file_name', 'path')

Description slci.ExportTraceReport('model_name') generates an XLS file that
contains a “Traceability Matrix” on page 3-40. model_name is the name
of the model.

slci.ExportTraceReport('model_name', 'file_name') generates
an XLS file that contains a “Traceability Matrix” on page 3-40.
file_name is a string that specifies the name of the XLS file. The first
time that you call slci.ExportTraceReport, file_name is optional. If
you do not provide file_name, the function names the file using the
following convention. modelUpdate is the date and time that you last
updated the model:

model_name_Trace_modelUpdate.xls

To regenerate the traceability matrix, you must specify file_name.

slci.ExportTraceReport('model_name', 'file_name', 'path')
generates an XLS file that contains a “Traceability Matrix” on page
3-40. path is an optional string that specifies the full path to the
location where you want the software to save the file.

Tips • The slci.ExportTraceReport function works in Microsoft®

Windows® platforms only.

• To include requirements documentation in the traceability
matrix, attach requirements documents to the model before using
slci.ExportTraceReport.

• You must generate and inspect model code, with traceability
report options selected, and without reported failures, before using
slci.ExportTraceReport.

• The slci.ExportTraceReport function does not support generating
a traceability matrix for referenced models. When you generate a

3-39

slci.ExportTraceReport

traceability matrix for a model that contains referenced models,
the traceability matrix contains information about the Model block
only. The traceability matrix does not contain information about the
contents of the referenced model. If your model contains referenced
models, generate a traceability matrix for the top-level model and
each referenced model separately.

• In most cases, the slci.ExportTraceReport function identifies
comments that you add to the traceability matrix. When the function
cannot identify comments, the traceability matrix includes the text:

Row is not unique: comment

For more information, see Prerequisites for Generating a Traceability
Matrix.

Definitions Traceability Matrix

A traceability matrix provides traceability among model objects,
generated code, and model requirements. You can add comments to the
generated traceability matrix. If you change the model and regenerate
the traceability matrix, the software retains your comments.

Examples Generate a traceability matrix with traceability between model objects
and generated code for the slcidemo_roll model.

1 Open the example model slcidemo_roll_orig and save it to a work
folder as slcidemo_roll.

2 Open the Configuration Parameters dialog box, and on the Code
Generation > Report pane, verify that at least one traceability
report option is selected.

3 Optionally, run model compatibility checks to verify that the model is
ready for code inspection. For example, open the SLCI Advisor using
the MATLAB command slciadvisor('slcidemo_roll'), select
all checks, and run the checks.

4 Generate and inspect the model code.

3-40

slci.ExportTraceReport

5 Create a traceability matrix using a command similar to the
following:

slci.ExportTraceReport('slcidemo_roll','slcidemo_roll_tracereport')

6 Open the file slcidemo_roll_tracereport.xls and examine the
contents of the generated worksheets.

How To • Traceability Matrices

• Prerequisites for Generating a Traceability Matrix

• Generate a Traceability Matrix

3-41

slciadvisor

Purpose Open Simulink Code Inspector Advisor

Syntax slciadvisor('model_name')

Description slciadvisor('model_name') opens an SLCI Advisor session
(equivalent to Model Advisor preloaded with Simulink Code Inspector
checks) for the specified open model. This function provides direct
access to SLCI model compatibility checking that can streamline
iterative checking of a model.

Example Open an interactive SLCI model compatibility checking session for the
example model slcidemo_roll_orig.

1 Open the example model slcidemo_roll_orig and save it to a work
folder as slcidemo_roll.

2 Open the SLCI Advisor for the model using the following command:

>> slciadvisor('slcidemo_roll')

3 Select all SLCI checks, and run the checks.

How To • “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

3-42

4

Model Configuration
Constraints

• “About Model Configuration Constraints” on page 4-2

• “Simulink Configuration Parameter Constraints” on page 4-4

• “Other Modelwide Attribute Constraints” on page 4-18

• “Supported Functions and Operations in Code Replacement Libraries”
on page 4-22

4 Model Configuration Constraints

About Model Configuration Constraints
Simulink Code Inspector requires that you set a subset of Simulink
configuration parameters and other model attributes to specific values.
“Simulink Configuration Parameter Constraints” on page 4-4 presents
required settings for Configuration Parameters Dialog Box parameters and
their equivalent command-line parameters. “Other Modelwide Attribute
Constraints” on page 4-18 presents required settings for other model
attributes.

For each Configuration Parameters dialog pane or other model attributes
category, a table provides:

• The category name; dialog pane names link to the complete dialog pane
description

• Constraints that apply to each listed model configuration parameter or
model attribute

A sample table is shown below. For each entry:

• The Parameter column lists the dialog box name of the parameter, with
the command-line name of the parameter in parentheses. (For model
attribute entries, the first column identifies the attribute.)

• The Constraint column lists the Simulink Code Inspector constraint on
the model parameter or attribute.

• The FATAL / Nonfatal column identifies whether violation of the
constraint terminates code inspection. You can also configure code
inspection so that a constraint violation (FATAL or Nonfatal) terminates
code inspection.

• The Compatibility Check column lists the compatibility check that
checks for violation of the constraint, and links to a description of the check.

4-2

About Model Configuration Constraints

Solver Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Type (SolverType) Must be set to Fixed-step. Nonfatal Check solver settings >
Verify ’Type’ setting

Solver (Solver) Must be set to Discrete
(no continuous
states) (equivalent
to FixedStepDiscrete
specified at the command
line).

Nonfatal Check solver settings >
Verify ’Solver’ setting

4-3

4 Model Configuration Constraints

Simulink Configuration Parameter Constraints

In this section...

“Solver” on page 4-5

“Data Import/Export” on page 4-5

“Optimization” on page 4-5

“Optimization: Signals and Parameters” on page 4-7

“Diagnostics: Data Validity” on page 4-8

“Diagnostics: Connectivity” on page 4-9

“Diagnostics: Model Referencing” on page 4-9

“Hardware Implementation” on page 4-10

“Code Generation: General” on page 4-11

“Code Generation: Comments” on page 4-12

“Code Generation: Symbols” on page 4-12

“Code Generation: Custom Code” on page 4-13

“Code Generation: Interface” on page 4-13

“Code Generation: Verification” on page 4-16

“Code Generation: Code Style” on page 4-16

“Code Generation: Data Type Replacement” on page 4-16

“Code Generation: Not in GUI” on page 4-17

4-4

Simulink® Configuration Parameter Constraints

Solver

Solver Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Type (SolverType) Must be set to Fixed-step. Nonfatal Check solver settings >
Verify ’Type’ setting

Solver (Solver) Must be set to discrete
(no continuous
states) (equivalent
to FixedStepDiscrete
specified at the command
line).

Nonfatal Check solver settings >
Verify ’Solver’ setting

Data Import/Export

Data Import/Export Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Initial state
(LoadInitialState)

Must be cleared (set to off). Nonfatal Check solver settings
> Verify ’Initial state’
setting

Optimization

Optimization Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Implement logic
signals as Boolean

Must be selected (set to on). Nonfatal Check optimization
settings > Verify

4-5

4 Model Configuration Constraints

Optimization Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

data (vs. double)
(BooleanDataType)

’Implement logic signals
as Boolean data (vs.
double)’ setting

Optimize
initialization code
for model reference
(OptimizeModelRef-
InitCode)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify
’Optimize initialization
code for model reference’
setting

Remove code from
floating-point to
integer conversions
that wraps
out-of-range values
(EfficientFloat2Int-
Cast)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify ’Remove
code from floating-point
to integer conversions
that wraps out-of-range
values’ setting

Remove code from
floating-point to
integer conversions
with saturation that
maps NaN to zero
(EfficientMapNaN2Int-
Zero)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ’Remove
code from floating-point
to integer conversions
with saturation that
maps NaN to zero’
setting

Remove code that
protects against
division arithmetic
exceptions
(NoFixptDivByZero-
Protection)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify
’Remove code that
protects against division
arithmetic exceptions’
setting

4-6

Simulink® Configuration Parameter Constraints

Optimization: Signals and Parameters

Optimization Pane: Signals and Parameters

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Inline invariant
signals
(InlineInvariant-
Signals)

Must be selected (set to on). Nonfatal Check optimization
settings > Verify ’Inline
invariant signals’ setting

Simplify array
indexing
(StrengthReduction)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify
’Simplify array indexing’
setting

Pack Boolean
data into bitfields
(BooleansAsBitfields)

Must be cleared (set to off). Nonfatal Check optimization
settings > Verify ’Pack
Boolean data into
bitfields’ setting

Maximum stack size
(bytes) (MaxStackSize)

Must be set to inf. Nonfatal Check optimization
settings>Verify
’Maximum stack size
(bytes)’ setting

Loop unrolling
threshold
(RollThreshold)

Must be set to a value
that does not result in
partially unrolled loops in
the generated code.

Nonfatal Check loop unrolling
threshold setting>Verify
loop unrolling threshold
setting

Pass reusable
subsystem
outputs as:
(PassReuseOutputArgsAs)

Must be set to Structure
reference if referenced
model has root outports
with non-auto storage class.

Nonfatal Check for root Outport
blocks that have
non-auto storage class
>Verify that the storage
class of root outports is
supported

4-7

4 Model Configuration Constraints

Diagnostics: Data Validity

Diagnostics Pane: Data Validity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Detect downcast
(ParameterDowncastMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
downcast’ setting

Detect overflow
(ParameterOverflowMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
overflow’ setting

Detect underflow
(ParameterUnderflow-
Msg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
underflow’ setting

Detect precision loss
(ParameterPrecision-
LossMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
precision loss’ setting

Detect loss
of tunability
(ParameterTunability-
LossMsg)

Must be set to error. Nonfatal Check diagnostic
settings > Verify ’Detect
loss of tunability’ setting

Underspecified
initialization
detection
(Underspecified-
Initialization-
Detection)

Must be set to Simplified.
Configuring the model
to initialize block initial
conditions using simplified
behavior can improve the
consistency of model results.

Nonfatal Check diagnostic
settings > Verify
’Underspecified
initialization detection’
setting

4-8

Simulink® Configuration Parameter Constraints

Diagnostics: Connectivity

Diagnostics Pane: Connectivity

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Bus signal treated as
vector (StrictBusMsg)

Must be set to
error (equivalent to
ErrorOnBusTreatedAs-
Vector specified at the
command line).

FATAL Check diagnostic
settings > Verify Bus
signal treated as vector
setting

Non-bus signals
treated as bus signals
(NonBusSignalsTreated-
AsBus)

Must be set to error. FATAL Check diagnostic
settings > Verify
’Non-bus signals treated
as bus signals’ setting

Diagnostics: Model Referencing

Diagnostics Pane: Model Referencing

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Invalid root
Inport/Outport
block connection
(ModelReferenceIOMsg)

Must be set to error. This
setting disallows automatic
insertion of hidden signal
copy blocks at the model
inports and outports. If
an error is generated, it
identifies the locations at
which you can manually
insert Signal Conversion
blocks to avoid the error
and maintain traceability.

Nonfatal Check diagnostic
settings > Verify ’Invalid
root Inport/Outport
block connection’ setting

4-9

4 Model Configuration Constraints

Hardware Implementation

Hardware Implementation Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Number of bits: char
(ProdBitPerChar)

Must be set to 8. Nonfatal Check hardware
implementation settings
> Verify ’char’ setting

Number of bits: short
(ProdBitPerShort)

Must be set to 16. Nonfatal Check hardware
implementation settings
> Verify ’short’ setting

Number of bits: int
(ProdBitPerInt)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’int’ setting

Number of bits: long
(ProdBitPerLong)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’long’ setting

Number of bits: float
(ProdBitPerFloat)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’float’ setting

Number of
bits: double
(ProdBitPerDouble)

Must be set to 64. Nonfatal Check hardware
implementation settings
> Verify ’double’ setting

Number of bits:
native (ProdWordSize)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’native’ setting

Number of
bits: pointer
(ProdBitPerPointer)

Must be set to 32. Nonfatal Check hardware
implementation settings
> Verify ’pointer’ setting

Signed integer
division rounds to
(ProdIntDivRoundTo)

Must be set to Zero. Nonfatal Check hardware
implementation settings
> Verify ’Signed integer
division rounds to’
setting

4-10

Simulink® Configuration Parameter Constraints

Hardware Implementation Pane

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Shift right on a
signed integer as
arithmetic shift
(ProdShiftRightInt-
Arith)

Must be selected (set to on). Nonfatal Check hardware
implementation settings
> Verify ’Shift right
on a signed integer as
arithmetic shift’ setting

None (ProdEqTarget) Must be selected (set to on). Nonfatal Check hardware
implementation settings
> Verify ’None’ setting

• Device vendor

• Device type
(ProdHWDeviceType)

Must not be set to
ASIC/FPGA.

Nonfatal Check hardware
implementation
settings>Verify ’Device
vendor->Device type‘
setting

Code Generation: General

Code Generation Pane: General

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

System target file
(SystemTargetFile)

Must be set to ert.tlc or
the system target file for an
ERT-derived target.

FATAL Check system target file
setting

Language
(TargetLang)

Must be set to C or C++. FATAL Check code generation
settings > Verify
’Language’ setting

TLC options
(TLCOptions)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify ’TLC
options’ setting

4-11

4 Model Configuration Constraints

Code Generation: Comments

Code Generation Pane: Comments

Parameter Constraint FATAL /
Nonfatal

Compatibility Check

Include comments
(GenerateComments)

Must be selected (set to on).
The Code Inspector parses
autogenerated comments
to obtain traceability
information about model
data.

FATAL Check code generation
settings > Verify ’Include
comments’ setting

Code Generation: Symbols

Code Generation Pane: Symbols

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Generate scalar
inlined parameter
as (InlinedPrmAccess)

Must be set to Literals. Nonfatal Check code generation
settings > Verify
’Generate scalar inlined
parameter as’ setting

Signal naming
(SignalNamingRule)

Must be set to None. Nonfatal Check code generation
settings>Verify ’Signal
naming’ setting

Parameter naming
(ParamNamingRule)

Must be set to None. Nonfatal Check code generation
settings>Verify
’Parameter naming’
setting

4-12

Simulink® Configuration Parameter Constraints

Code Generation: Custom Code

Code Generation Pane: Custom Code

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Source file
(CustomSourceCode)

Must be unspecified (set to
'').

FATAL Check code generation
settings > Verify ’Source
file’ setting

Header file
(CustomHeaderCode)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings>Verify ‘Header
file’ setting

Initialize function
(CustomInitializer)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify
’Initialize function’
setting

Terminate function
(CustomTerminator)

Must be unspecified (set to
'').

Nonfatal Check code generation
settings > Verify
’Terminate function’
setting

Code Generation: Interface

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Code replacement
library
(CodeReplacement-
Library)

Must be set to C89/C90
(ANSI), ANSI_C, C99
(ISO) , or ISO_C in the
Configuration Parameters
dialog box. You can also
use “Supported Functions
and Operations in Code

Nonfatal Check code generation
settings > Verify ’Code
replacement library’
setting

4-13

4 Model Configuration Constraints

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Replacement Libraries” on
page 4-22.

Shared code
placement
(UtilityFuncGeneration)

Must be set to Shared
location. Using a shared
location for utility functions,
macros, and user-defined
data types promotes
debugging and traceability
of generated code.

Nonfatal Check code generation
settings>Verify ’Shared
code placement’ setting

Support: non-finite
numbers
(SupportNonFinite)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’non-finite numbers’
setting

Support:
absolute time
(SupportAbsoluteTime)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’absolute time’ setting

Classic call interface
(GRTInterface)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify ’Classic
call interface’ setting

Single output/update
function
(CombineOutputUpdate-
Fcns)

Must be selected (set to on). Nonfatal Check code generation
settings > Verify ’Single
output/update function’
setting

Terminate
function required
(IncludeMdlTerminate-
Fcn)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’Terminate function
required’ setting

Generate
reusable code
(MultiInstanceERTCode)

Must be selected (set to on).
This check applies only to
the top model in a model
hierarchy.

Nonfatal Check code generation
settings > Verify
’Generate reusable code’
setting

4-14

Simulink® Configuration Parameter Constraints

Code Generation Pane: Interface

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Pass root-level I/O as
(RootIOFormat)

Must be set to Individual
arguments. This check
applies only to the top
model in a model hierarchy.

Nonfatal Check code generation
settings > Verify ’Pass
root-level I/O as’ setting

Suppress error
status in real-time
model data structure
(SuppressErrorStatus)

Must be selected (set to
on). This helps prevent
generation of the rtModel
data structure, which is
not supported for code
inspection.

Nonfatal Check code generation
settings > Verify
’Suppress error status
in real-time model data
structure’ setting

Combine signal/state
structures
(CombineSignalStateStructs)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’Combine signal/state
structures’ setting

MAT-file logging
(MatFileLogging)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’MAT-file logging’ setting

Interface
(RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO,
ExtMode, and
GenerateASAP2)

Must be cleared
(RTWCAPIParams,
RTWCAPISignals,
RTWCAPIStates,
RTWCAPIRootIO, ExtMode,
and GenerateASAP2 must
be set to off).

FATAL Check code generation
settings > Verify Code
Generation > Interface >
Interface setting

4-15

4 Model Configuration Constraints

Code Generation: Verification

“Code Generation Pane: Verification”

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Create block
(CreateSILPILBlock)

Must be set to None. Nonfatal Check code generation
settings > Verify ’Create
block’ setting

Measure function
execution times
(CodeProfiling-
Instrumentation)

Must be cleared (set to off). Nonfatal Check code generation
settings > Verify
’Measure function
execution times’ setting

Code Generation: Code Style

Code Generation Pane: Code Style

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Preserve condition
expression in
if statement
(PreserveIfCondition)

Must be selected (set to on). Nonfatal Check code generation
settings > Verify
’Preserve condition
expression in if
statement’ setting

Code Generation: Data Type Replacement

Code Generation Pane: Data Type Replacement

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

Replace data
type names in
the generated
code (EnableUser-
ReplacementTypes)

Must be cleared (set to off).
Data type replacement
is not supported for code
inspection.

Nonfatal Check code generation
settings > Verify ’Replace
data type names in the
generated code’ setting

4-16

Simulink® Configuration Parameter Constraints

Code Generation: Not in GUI

Parameter Command-Line Information Summary

Parameter Constraint
FATAL /
Nonfatal Compatibility Check

AdvancedOptControl Should be set to -SLCI.
This setting disables
optimizations that are
incompatible with Simulink
Code Inspector.

Nonfatal Check optimization
settings > Verify
’AdvancedOptControl’
setting

IncludeERTFirstTime Must be set to off. Nonfatal Check code generation
settings > Verify
’IncludeERTFirstTime’
setting

4-17

4 Model Configuration Constraints

Other Modelwide Attribute Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Unconnected objects There must not be
unconnected lines, input
ports, or output ports in the
model or subsystem. This
helps prevent dead code and
hidden ground blocks.

Nonfatal Check for unconnected
objects in the model

Function specifications The model cannot specify
custommodel entry function
prototypes. Function
specification in the Model
Interface dialog box must
be set to Default model
initialize and step
functions.

Nonfatal Check function
specification setting

Conditional input
branch execution

The model must enable
signal storage reuse and
local block outputs when
using conditional input
branch execution.

Nonfatal Check conditional input
branch execution setting

Unsupported blocks There must not be blocks
in the model that are not
supported by Simulink Code
Inspector.

Nonfatal Check for unsupported
blocks

4-18

Other Modelwide Attribute Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Storage classes for
workspace variables

The model cannot reference
workspace variables that
are not supported for one or
both of these reasons:
• The “Custom Storage
Classes” Type is not set
to Unstructured.

• Workspace variable is
tunable, with data type
set to struct.

.

Nonfatal Check storage class for
workspace variables

Usage of sample times The model cannot use
multiple, variable,
continuous, or
asynchronous sample
times.

FATAL Check for sample times
in the model

Automatic insertion
of Signal Conversion
blocks on signals
entering block inports

Automatic insertion of a
Signal Conversion block on
a signal entering a block
inport is not supported
for code inspection. It
creates a hidden Signal
Conversion block, which
is not supported for code
inspection.

Nonfatal Check for Signal
Conversion blocks
automatically inserted
on signals entering block
input ports > Verify
no Signal Conversion
blocks are automatically
inserted on signals
entering block inports

Fixed-point
instrumentation and
block reduction both
selected

Simultaneous use of
fixed-point instrumentation
and block reduction is
not supported for code
inspection.

Nonfatal Check for usage
of fixed-point
instrumentation > Verify
usage of fixed-point
instrumentation

4-19

4 Model Configuration Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Conditional assignment
of root Outport blocks

If the root outport storage
class is set to Auto, when
it used in a referenced
model, it cannot be directly
connected to conditionally
executed subsystems.

Nonfatal Check for root
Outport blocks being
conditionally assigned

Root Outport block
sample times

Root Outport blocks
cannot specify a constant
(Inf) sample time. This
constraint prevents the root
outport assignment from
being moved to the model
initialize function, which
would cause the model
functions to fail validation.

Nonfatal Check usage of root
Outport blocks > Verify
sample times

Root Output block bus
passing method

A root Outport block that
passes a bus to a parent
model must pass the bus
as a structure. Otherwise,
Simulink software might
insert a hidden Signal
Conversion block in the
parent model, which is
not supported for code
inspection.

Nonfatal Check usage of root
Outport blocks > Verify
root Outports pass buses
to parent models as
structures

4-20

Other Modelwide Attribute Constraints

Attribute Constraint
FATAL /
Nonfatal Compatibility Check

Automatic virtual
to nonvirtual bus
conversion

Automatic conversion
between virtual and
nonvirtual buses is
not supported for code
inspection. It creates a
hidden Signal Conversion
block, which is not
supported for code
inspection.

FATAL Check usage of buses
> Check for automatic
conversion between
virtual to non-virtual
buses

Block operations on a
bus

A nonvirtual block cannot
operate on a virtual bus,
and a Unit Delay block
cannot operate on a bus
(virtual or nonvirtual).
This constraint simplifies
bus processing to promote
traceability and readability
of generated code.

FATAL Check usage of buses >
Verify that no blocks in
the model operate on a
virtual bus

4-21

4 Model Configuration Constraints

Supported Functions and Operations in Code Replacement
Libraries

Simulink Code Inspector inspects code that uses these functions and
operations in the code replacement libraries (CRLs). For more information
about CRLs, see “Code Replacement”.

Math Functions

abs acos acosh asin

asinh atan atan2 atanh

ceil cos cosh exp

fix floor hypot log

log10 max min mod/fmod

pow rem round saturate

sin sincos sinh sqrt

tan tanh

Operator Key Scalar Inputs Nonscalar Inputs

Multiplication
(*)

RTW_OP_MUL — Yes

Matrix right
division (/)

RTW_OP_RDIV1 — Yes

Matrix left
division (\)

RTW_OP_LDIV1 — Yes

Matrix
inversion (inv)

RTW_OP_INV1 — Yes

Transposition
(.')

RTW_OP_TRANS — Yes

Notes:
1 Matrix division and inversion are supported for Simulink code generation
(not for Stateflow® or MATLAB Coder™ code generation).

4-22

5

Block Constraints

• “About Block Constraints” on page 5-2

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

5 Block Constraints

About Block Constraints
Simulink Code Inspector supports a subset of Simulink blocks for code
inspection. For the supported blocks, some block-specific constraints on
data types and block parameters may apply. Additionally, a few constraints
apply to all supported blocks. Before code inspection, when you check the
compatibility of your model with code inspection rules, the compatibility
checker detects and reports violations of block constraints.

“Block Constraints — Alphabetical List” on page 5-5 presents the supported
blocks in alphabetical order. For each supported block, a table provides:

• The block name, which links to the complete block description

• Data type constraints that apply to the block

• Block parameter constraints that apply to the block

A sample table is shown below. For each entry:

• The Constraint column lists the Simulink Code Inspector constraint on
block data types or a block parameter. For block parameters, the entry lists
the dialog box name of the parameter, with the command-line name of the
parameter in parentheses.

• The FATAL / Nonfatal column identifies whether violation of the
constraint terminates code inspection. You can also configure code
inspection so that constraint violation (FATAL or Nonfatal) terminates
code inspection.

• The Compatibility Check column lists the compatibility check that
checks for violation of the constraint, and links to a description of the check.

5-2

About Block Constraints

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Upper limit (UpperLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Lower limit (LowerLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

The source of the upper limit value
must be block parameter Upper
limit rather than input ports
(UpperLimitSource must be set to
dialog).

Nonfatal

The source of the lower limit value
must be block parameter Lower
limit rather than input ports
(LowerLimitSource must be set to
dialog).

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of
Discontinuities blocks >
Check Saturate blocks

“All Blocks” on page 5-7 lists constraints that apply to supported blocks.

“Supported Blocks — By Category” on page 5-49 presents the supported
blocks by category and provides links to the block-specific constraints.

5-3

5 Block Constraints

Note Blocks that are supported for code inspection are available in the block
library slcilib, which you can open by entering slcilib in the MATLAB
Command Window.

5-4

Block Constraints — Alphabetical List

Block Constraints — Alphabetical List

In this section...

“All Blocks” on page 5-7

“Abs” on page 5-8

“Action Port” on page 5-9

“Bitwise Operator” on page 5-9

“Bus Assignment” on page 5-10

“Bus Creator” on page 5-10

“Bus Selector” on page 5-11

“Constant” on page 5-11

“Data Store Memory” on page 5-12

“Data Store Read” on page 5-13

“Data Store Write” on page 5-14

“Data Type Conversion” on page 5-15

“Data Type Duplicate” on page 5-15

“Data Type Propagation” on page 5-16

“Discrete-Time Integrator” on page 5-16

“Demux” on page 5-18

“DocBlock” on page 5-18

“Enable Port” on page 5-18

“From” on page 5-19

“Function-Call Generator” on page 5-19

“Gain” on page 5-20

“Goto” on page 5-21

“Ground” on page 5-21

“If” on page 5-21

“Inport” on page 5-22

5-5

5 Block Constraints

In this section...

“Logical Operator” on page 5-23

“1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1 or 2-D)” on
page 5-23

“Math Function” on page 5-26

“Merge” on page 5-27

“MinMax” on page 5-27

“Model” on page 5-28

“Model Info” on page 5-28

“Multiport Switch” on page 5-28

“Mux” on page 5-29

“Outport” on page 5-30

“Probe” on page 5-30

“Product” on page 5-31

“Relational Operator” on page 5-33

“Reshape” on page 5-33

“Rounding Function” on page 5-34

“Saturation” on page 5-34

“Selector” on page 5-35

“S-Function” on page 5-35

“Shift Arithmetic” on page 5-37

“Sign” on page 5-38

“Signal Conversion” on page 5-38

“Signal Specification” on page 5-38

“Sqrt ” on page 5-39

“Stateflow ” on page 5-40

“Subsystems” on page 5-43

5-6

Block Constraints — Alphabetical List

In this section...

“Sum, Add, Subtract” on page 5-44

“Switch” on page 5-45

“Switch Case” on page 5-45

“Terminator” on page 5-46

“Trigger” on page 5-46

“Trigonometric Function” on page 5-47

“Unit Delay” on page 5-48

“Vector Concatenate” on page 5-48

All Blocks

Constraints that apply to all blocks

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types Input and output ports must be of
data types among the following:
double, single, int8, uint8,
int16, uint16, int32, uint32,
boolean, or Enumerated with
default value 0. If the block
supports buses:

• Ports can be buses for which the
elements (potentially including
other buses) meet the data type
constraint.

• Ports must not have arrays of
buses.

• Ports must not have buses with
elements that are arrays of
buses.

Nonfatal All block compatibility checks

5-7

5 Block Constraints

Constraints that apply to all blocks

Constraint
FATAL /
Nonfatal Compatibility Check

Block names must not contain
character strings */ or /*.
Additionally, block names must not
end with the character *.

Nonfatal

Input and output ports must be
noncomplex. Complex values are
not supported for code inspection.

Nonfatal

Input and output ports must be
scalars, vectors, or 2D matrices.

Nonfatal

Input and output ports must not
use frame-based signals.

Nonfatal

Output custom signal storage class
must be set to Unstructured.

Nonfatal

Output port must not be testpointed
when the block has constant (Inf)
sample time.

Nonfatal

Other

Output signal storage class must
be set to Auto when the block has
constant (Inf) sample time.

Nonfatal

Abs

Abs

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Check usage of Math
Operations blocks > Check
Absolute blocks

5-8

Block Constraints — Alphabetical List

Abs

Constraint
FATAL /
Nonfatal Compatibility Check

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Action Port

Action Port

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Ports and
Subsystems blocks >Check
Action Port blocks

Bitwise Operator

Bitwise Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports

If Number of input ports
(NumInputPorts) is 1 and
Operator (logicop) is set to AND,
OR, NAND, NOR, or XOR, the inport
data type must be scalar. If the

Nonfatal

Check usage of Logical and
Bit Operations blocks > Check
Bitwise Operator blocks

5-9

5 Block Constraints

Bitwise Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Use bit mask (Usebitmask) check
box is selected, you cannot specify
the Number of input ports.

Block
Parameters

No block-specific constraints

Bus Assignment

Bus Assignment

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Routing blocks > Check Bus
Assignment blocks

Bus Creator

Bus Creator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Bus Creator
blocks

5-10

Block Constraints — Alphabetical List

Bus Selector

Bus Selector

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Bus Selector
blocks

Constant

Constant

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Constant value (Value) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Check usage of Sources blocks
> Check Constant blocks

5-11

5 Block Constraints

Data Store Memory

Data Store Memory

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to allblocks.Data Types

State must have storage class Auto.
Values other than Auto require use
of storage classes, which are not
supported for code inspection.

Nonfatal

Initial value (InitialValue)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, have two or
more dimensions, or specify the
range (:) operator.

FATALBlock
Parameters

Signal type (SignalType) must
be set to auto or real. Complex
values are not supported for code
inspection.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Memory blocks

For global data store memory,
configuration parameter
Optimization > Signals and
Parameters > Inline parameters
(InlineParams) must be selected
(set to on).

NonfatalOther

For global data store memory,
Initial value (InitialValue)
must not be tunable.

Nonfatal

Check usage of global data
stores >Verify global data
store usage

5-12

Block Constraints — Alphabetical List

Data Store Read

Data Store Read

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify elements.
Specify element(s) to select
(DataStoreElements) must be ''.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Read blocks

Block
Parameters

The block cannot reference signal
objects as synthesized local data
stores.

Nonfatal Check for usage of
synthesized local data stores
>Verify synthesized local data
store usage

For global data store memory,
configuration parameter
Optimization > Signals and
Parameters >Inline parameters
(InlineParams) must be selected
(set to on).

NonfatalOther

For global data store memory,
Initial value (InitialValue)
must not be tunable.

Nonfatal

Check usage of global data
stores >Verify global data
store usage

5-13

5 Block Constraints

Data Store Write

Data Store Write

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify elements.
Specify element(s) to select
(DataStoreElements) must be ''.

Nonfatal

Check usage of Signal Routing
blocks > Check Data Store
Write blocks

Block
Parameters

The block cannot reference signal
objects as synthesized local data
stores.

Nonfatal Check for usage of
synthesized local data stores
>Verify synthesized local data
store usage

For global data store memory,
configuration parameter
Optimization > Signals and
Parameters >Inline parameters
(InlineParams) must be selected
(set to on).

NonfatalOther

For global data store memory,
Initial value (InitialValue)
must not be tunable.

Nonfatal

Check usage of global data
stores >Verify global data
store usage

5-14

Block Constraints — Alphabetical List

Data Type Conversion

Data Type Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Input and output to have equal
(ConvertRealWorld) must be Real
World Value (RWV).

NonfatalBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Signal
Attributes blocks > Check
Data Type Conversion blocks

Data Type Duplicate

Data Type Duplicate

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Attributes blocks > Check
Data Type Duplicate blocks

5-15

5 Block Constraints

Data Type Propagation

Data Type Propagation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal
Attributes blocks > Check
Data Propogation blocks

Discrete-Time Integrator

Discrete-Time Integrator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input ports data types must be:
• single or double for non-reset
ports

• boolean for external reset ports

Nonfatal

Inports and outports must be
scalars.

Nonfatal

Output ports data types must
single or double.

Nonfatal

Data Types

Except for the reset port, input and
output ports should have the same
data type.

Nonfatal

Block parameter Integrator
method (IntegratorMethod) must
be set to one of the following:

• Integration: Forward Euler

• Integration: Backward
Euler

NonfatalBlock
Parameters

Check usage of Discrete
blocks > Check Discrete
Integrator blocks

5-16

Block Constraints — Alphabetical List

Discrete-Time Integrator

Constraint
FATAL /
Nonfatal Compatibility Check

• Integration: Trapezoidal

Block parameter Show state
port (ShowStatePort) must not be
selected (must be set to off).

Nonfatal

If External reset (ExternalReset)
is not set to none, the source of
Inport 2 must not:

• Be a Constant block.

• Have a constant sample time.

Nonfatal

Block parameters Upper
saturation limit
(UpperSaturationLimit)
and Lower saturation limit
(LowerSaturationLimit) must not:

• Be empty, non-finite, or complex.

• Use MATLAB structures.

• Have two or more dimensions.

• Specify the : operator.

FATAL

Other Block must not be inside a
conditional subsystem.

Nonfatal

5-17

5 Block Constraints

Demux

Demux

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Demux blocks

DocBlock

DocBlock

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types No block-specific constraints

Block
Parameters

No block-specific constraints

Not applicable

Enable Port

Enable Port

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

The signal entering an enable port
of a subsystem must be of data type
boolean.

Nonfatal

Show output port
(ShowOutputPort) must not be
selected (must be set to off).

NonfatalBlock
Parameters

Check usage of Ports and
Subsystems blocks > Check
Enable Port blocks

5-18

Block Constraints — Alphabetical List

Enable Port

Constraint
FATAL /
Nonfatal Compatibility Check

Enable Port blocks are not
supported at the root level of the
model.

FATAL

The signal entering the Enable Port
of the parent subsystem must not:
• Be from a Constant block.

• Have a constant sample time.

Nonfatal

From

From

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check From blocks

Function-Call Generator

Function-Call Generator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The Number of iterations
(numberOfIterations) must be set
to 1.

Check usage of Ports and
Subsystems blocks>Check
Function Call Generator
blocks

5-19

5 Block Constraints

Gain

Gain

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Gain (Gain) must not: be empty,
be nonfinite, have a MATLAB
structure as a value, be complex,
have two or more dimensions, or
specify the range (:) operator.

FATAL

Parameter data type
(ParamDataTypeStr) must use
the same data type as the Gain
block input.

Nonfatal

Multiplication
(Multiplication) must be
set to Element-wise(K.*u),
Matrix(K*u), Matrix(u*K), or
Matrix(K*u)(u vector).

Note Only single or double
data types are supported for
Matrix(K*u), Matrix(u*K),
or Matrix(K*u)(u vector)
multiplications methods.

Nonfatal

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks > Check
Gain blocks

5-20

Block Constraints — Alphabetical List

Goto

Goto

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Goto blocks

Ground

Ground

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Sources blocks
> Check Ground blocks

If

If

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Block destination must not be a
terminator block or an empty action
subsystem.

Nonfatal

Check usage of Ports and
Subsystems blocks >Check If
blocks

5-21

5 Block Constraints

If

Constraint
FATAL /
Nonfatal Compatibility Check

Block
Parameters

Source of Inport 1 must not:
• Be a Constant block.

• Have a constant sample time.

Nonfatal

Inport

Inport

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must not be set
to Yes.

Nonfatal

Signal Type
(NumberOfTableDimensions) must
not be set to complex.

Nonfatal

Sampling Mode (SamplingMode)
must not be set to Frame based.

Nonfatal

Block
Parameters

For inports in triggered
subsystems, Latch input
be delaying outside signal
(LatchByDelayingOutsideSignal)
must not selected (must be set to
off).

Nonfatal

Check usage of Sources blocks
> Check Inport blocks

5-22

Block Constraints — Alphabetical List

Note Shadowed inports are supported for code inspection.

Logical Operator

Logical Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Output ports must be of the data
type boolean or uint8.

Nonfatal

Block must have at least two
inports, except in the case of the
NOT operator.

FATAL

Data Types
and Ports

The block input ports should have
the same data type.

Nonfatal

Block
Parameters

No block-specific constraints

Check usage of Logical and
Bit Operations blocks > Check
Logic blocks

1-D Lookup Table, 2-D Lookup Table, n-D Lookup
Table (1 or 2-D)

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports should have
the same data type.

Nonfatal

Data Types

Input and output ports must be
scalars.

Nonfatal

Check usage of Lookup Tables
blocks > Check Lookup Table
blocks

5-23

5 Block Constraints

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

Number of table dimensions
(NumberOfTableDimensions) must
be set to 1 or 2.

Nonfatal

Interpolation method
(InterpMethod) must be set to
Linear.

Nonfatal

Extrapolation method
(ExtrapMethod) must be set to
Clip or Linear.

Nonfatal

Index search method
(IndexSearchMethod) must be
set to Binary search.

Nonfatal

Begin index search using
previous index result
(BeginIndexSearchUsingPreviousIndexResult)
must not be selected (must be
set to off).

Nonfatal

Support tunable table
size in code generation
(SupportTunableTableSize) must
not be selected (must be set to off).

Nonfatal

Remove protection against
out-of-range input in generated
code (RemoveProtectionInput)
must be selected (must be set to on).

Nonfatal

Saturate on integer overflow
(SaturateOnIntegerOverflow)
must not be selected (must be set
to off).

Nonfatal

Fraction > Data Type
(FractionDataTypeStr) must
be set to double or single.

Nonfatal

Block
Parameters

5-24

Block Constraints — Alphabetical List

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

Table data (Table) must not:
be empty, be nonfinite, have a
MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Breakpoints 1
(BreakpointsForDimension1)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, have two or
more dimensions, or specify the
range (:) operator.

FATAL

Breakpoints 2
(BreakpointsForDimension2)
must not: be empty, be nonfinite,
have a MATLAB structure as a
value, be complex, have two or
more dimensions, or specify the
range (:) operator.

FATAL

Breakpoints 1
(BreakpointsForDimension1DataTypeStr)
must use the same data type as the
block input.

Nonfatal

Breakpoints 2
(BreakpointsForDimension2DataTypeStr)
must use the same data type as the
block input.

Nonfatal

Table data (TableDataTypeStr)
must use the same data type as the
block output.

Nonfatal

Intermediate Results
(IntermediateResultsDataTypeStr)

Nonfatal

5-25

5 Block Constraints

1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table

Constraint
FATAL /
Nonfatal Compatibility Check

must use the same data type as the
block output.

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Math Function

Math Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports Input and output ports should have

the same data type.
Nonfatal

Function (Operator) must
be set to one of the following
values: exp, log, 10^u, log10,
magnitude^2, square, transpose,
pow, reciprocal, hypot, rem, or
mod. You cannot select conj or
hermitian.

FATALBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks > Check
Math blocks

5-26

Block Constraints — Alphabetical List

Merge

Merge

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types
and Ports

Constraints that apply to all blocks.

Initial output (InitialOutput)
must be 0.

Nonfatal

Allow unequal port widths
(AllowUnequalInputPortWidths)
must not be selected (must be set
to off).

Nonfatal

Block
Parameters

Input port offsets
(InputPortOffsets) must be
[].

Nonfatal

Check usage of Signal Routing
blocks >Check Merge blocks

MinMax

MinMax

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports must be of
a data type among the following:
double, single, int8, uint8,
int16, uint16, int32, or uint32.

FATAL

Input and output ports should have
the same data type.

Nonfatal

Data Types

Block must have at least two
inports.

FATAL

Block
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks > Check
Minmax blocks

5-27

5 Block Constraints

Model

Model

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

The block cannot have variants.
Enable variants (Variant) must
not be selected (must be set to off).

Nonfatal

Check usage of Ports and
Subsystems blocks > Check
Model Reference blocks

Model Info

Model Info

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types No block-specific constraints

Block
Parameters

No block-specific constraints

Not applicable

Multiport Switch

Multiport Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Data input and output ports must
have the same data type.

Nonfatal

Data Types
and Ports

Block must have at least three
inports.

FATAL

Check usage of Signal
Routing blocks > Check
Multiport Switch blocks

5-28

Block Constraints — Alphabetical List

Multiport Switch

Constraint
FATAL /
Nonfatal Compatibility Check

If data port indices are specified
for a Multiport Switch block, there
can be only one value specified per
input.

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Allow different data input sizes
(AllowDiffInputSizes) must not
be selected (must be set to off).

Nonfatal

Block
Parameters

Data port for default case
(DataPortForDefault) must be set
to Last data port.

Nonfatal

Mux

Mux

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Signal Routing
blocks > Check Mux blocks

5-29

5 Block Constraints

Outport

Outport

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block cannot specify
variable-dimension signals.
Variable-size signal
(VarSizeSig) must not be set
to Yes.

Nonfatal

Signal type
(NumberOfTableDimensions) must
not be set to complex.

Nonfatal

Sampling mode (SamplingMode)
must not be set to Frame based.

Nonfatal

Root level outport Initial output
(InitialOutput) must be [].

Nonfatal

Block
Parameters

Source of initial output value
(SourceOfInitialOutputValue)
must be set to Dialog.

Nonfatal

Check usage of Sinks blocks >
Check Outport blocks

Probe

Probe

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

The block parameter Data type
for width (ProbeWidthDataType)
must not be boolean.

NonfatalBlock
Parameters

Check usage of Signal
Attributes blocks > Check
Probe blocks

5-30

Block Constraints — Alphabetical List

Probe

Constraint
FATAL /
Nonfatal Compatibility Check

The block parameter Data
type for signal dimensions
(ProbeDimensionsDataType) must
not be boolean.

Nonfatal

The block parameter Data
type for sample time
(ProbeSampleTimeDataType)
must be single or double.

Nonfatal

Product

Product

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Multiplication (Multiplication)
must be set to Element-wise(.*)
or Matrix (*).

Note Only single or double data
types are supported for Matrix (*)
multiplication.

Nonfatal

Block parameter Number of
inputs (inputs) must be set to 2,
**, /*, */, //, or / when both of the
following are true:

• Inport Signal type is a matrix.

Nonfatal

Block
Parameters

Check usage of Math
Operations blocks > Check
Product blocks

5-31

5 Block Constraints

Product

Constraint
FATAL /
Nonfatal Compatibility Check

• Product block parameter
Multiplication is set to Matrix
(*).

Block parameter Number of
inputs (inputs) must be set to 2,
**, /*, */, or // when both of the
following are true:

• Inport Signal type is a scalar or
vector.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Nonfatal

Block parameter Number of
inputs (inputs) must be set to /
when both of the following are true:

• Inport Signal type is a scalar.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

5-32

Block Constraints — Alphabetical List

Relational Operator

Relational Operator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Block output port data type must
be either an enumerated type with
default value 0, or boolean.

FATAL

Data Types

Block input ports should have the
same data type.

Nonfatal

Block
Parameters

Relational operator (Operator)
must be set to <=, ==, >=, ~=, <, or >
(not isInf, isNaN, or isFinite).

FATAL

Check usage of Logical and
Bit Operations blocks > Check
Relational Operator blocks

Reshape

Reshape

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Math
Operations blocks> Check
Reshape blocks

5-33

5 Block Constraints

Rounding Function

Rounding Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to allblocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Math
Operations blocks > Check
Rounding Function blocks

Saturation

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Input and output ports should have
the same data type.

Nonfatal

Upper limit (UpperLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Lower limit (LowerLimit) must
not: be empty, be nonfinite, have
a MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

The source of the upper limit value
must be block parameter Upper
limit rather than input ports

Nonfatal

Block
Parameters

Check usage of
Discontinuities blocks >
Check Saturate blocks

5-34

Block Constraints — Alphabetical List

Saturation

Constraint
FATAL /
Nonfatal Compatibility Check

(UpperLimitSource must be set to
dialog).

The source of the lower limit value
must be block parameter Lower
limit rather than input ports
(LowerLimitSource must be set to
dialog).

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Selector

Selector

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Inports and outports must be
scalars or vectors.

Nonfatal

Block
Parameters

Must use one-dimensional inputs
and must specify indices using the
block dialog (not using port-based
indexing).

Nonfatal

Check usage of Signal
Routing blocks > Check
Selector blocks

S-Function

Note Simulink Code Inspector supports S-functions created using the
Legacy Code Tool.

5-35

5 Block Constraints

S-Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Arguments must be scalars, or
vectors of fixed dimension.

Nonfatal

Block
Parameters

S-functions:
• Must be created using the Legacy
Code Tool.

• Can only specify an
OutputFcnSpec (not
InitializeConditionsFcnSpec,
StartFcnSpec, or
TerminateFcnSpec).

• Can not have more than one
dwork.

Note When you use the Legacy
Code Tool to define an S-Function
prototype, the:

• Data must be a scalar or a
one-dimensional vector. Do not
use a two-dimensional vector.
For example, use u[6], not
u[2][3].

• Dimension must be explicitly set.
For example, use u[6], not u[].

Nonfatal

Check usage of User-Defined
Function blocks > Check
S-Function blocks

5-36

Block Constraints — Alphabetical List

Shift Arithmetic

Shift Arithmetic

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types
and Ports No block-specific constraints

Diagnostic for out of range shift
value (DiagnosticForOORShift)
must be set to Error.

Nonfatal

Binary points to shift
(BinPtShiftNumber) must be
set to 0.

Nonfatal

Bits to shift: Number
(BitShiftNumber) must be
within the allowable range of the
inport data type.

Nonfatal

Block
Parameters

If Bits to shift: Source
(BitShiftNumberSource) is set
to Input port and Bits to shift:
Direction (BitShiftDirection) is
set to Bidirectional, the source of
Inport 2 must not:

• Be a Constant block.

• Have a constant sample time.

Nonfatal

Check usage of Logical and
Bit Operations blocks > Check
ArithShift blocks

5-37

5 Block Constraints

Sign

Sign

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

No block-specific constraints

Check usage of Math
Operations blocks>Check
Sign blocks

Signal Conversion

Signal Conversion

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Output (ConversionOutput) must
be set to Signal copy.

Nonfatal

Check usage of Signal
Attributes blocks > Check
Signal Conversion blocks

Signal Specification

Signal Specification

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Variable-size signal
(VariableSizeSignal) must
be No.

NonfatalBlock
Parameters

Check usage of Signal
Attributes blocks > Check
Signal Specification blocks

5-38

Block Constraints — Alphabetical List

Signal Specification

Constraint
FATAL /
Nonfatal Compatibility Check

Signal type (SignalType) must
not be complex.

Nonfatal

Sampling mode (SamplingMode)
must not be Frame based.

Nonfatal

Sqrt

Sqrt

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Block inputs and outports must
have the same data type.

Nonfatal

Data Types

Block inputs and outports data
types must be single or double.

FATAL

Function (Operator) must be sqrt
or signedSqrt.

NonfatalBlock
Parameters

Output signal type
(OutputSignalType) must not
be set to complex.

Nonfatal

Check usage of Math
Operations blocks > Check
Sqrt blocks

5-39

5 Block Constraints

Stateflow

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Stateflow
blocks Function packaging

(RTWSystemCode) must be set
to Inline.

Check usage of Stateflow
blocks

Stateflow data must not be of
machine scope.

Nonfatal Check for Stateflow machine
data >All Stateflow data must
be parented by a Stateflow
chart

Stateflow
Data and
Event
Types

Stateflow events must not be of
machine scope.

Nonfatal Check for Stateflow machine
events >All Stateflow events
must be parented by a
Stateflow chart

The chart must not contain control
flow cycles.

FATAL

The chart must not contain any of
the following objects:
• States

• Subcharts

• Graphical functions

• MATLAB functions

• Truth Tables

• Simulink functions

FATAL

Chart property Action Language
must be set to C.

Nonfatal

Chart property Update method
must be set to Inherited.

Nonfatal

Stateflow
Charts

Check usage of Stateflow
charts

5-40

Block Constraints — Alphabetical List

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Chart property Execute (enter)
Chart at Initialization must not
be selected.

FATAL

Chart property Saturate on
integer overflow must not be
selected.

Nonfatal

Chart property Support
variable-size arrays must
not be selected.

Nonfatal

The chart must not contain
unstructured control flow.

FATAL

The control flow must not have
more than 1 default transition.

Nonfatal

Transition must be for one of these
operations:
• := or =

• + , += , -, or -=

• * , *=, / or /=

• &, && or &=

• |, || or |=

• <<, >>, ++ or --

• cast()

• ^ or ^=

• %% or <

• <= or ==

• ~= or !=

• <> or >

NonfatalStateflow
transitions

Check usage of Stateflow
transitions

5-41

5 Block Constraints

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

• >= or ~

Transition must not access
context-sensitive constants.

Nonfatal

Transition must not access custom
data.

Nonfatal

Transitions must not have an
action.

Nonfatal

Transition must not contain a
binary operator with mixed data
type operands.

Nonfatal

Transition must not access time. Nonfatal

Non-terminating junctions must
have exactly one unconditional
transition exiting them.

FATAL

Chart must not contain a history
junction.

Nonfatal

Stateflow
Junctions

Unconditional transition must be
last in order of execution.

Nonfatal

Check usage of Stateflow
junctions

Chart must not use constants. Nonfatal

Chart must not use data stores Nonfatal

Chart data types must be builtin,
enumerated, or bus. If the chart
data type is a bus, the data must
not be arrays of buses or have
elements that are arrays of buses.

Nonfatal

Chart must not use data with initial
values.

Nonfatal

Chart must not use local data. Nonfatal

Stateflow
Data

Check usage of Stateflow data

5-42

Block Constraints — Alphabetical List

Stateflow

Constraint
FATAL /
Nonfatal Compatibility Check

Chart must not use parameters. Nonfatal

Chart must not use complex data. Nonfatal

Chart must not use non-scalar data. Nonfatal

Event scope must be an Output. NonfatalStateflow
Events Event trigger must be a

function-call.
Nonfatal

Check usage of Stateflow
events

Subsystems

Subsystem, Atomic Subsystem, Enabled Subsystem, Function-Call Subsystem, If
Action Subsystem, Triggered Subsystem

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Subsystems must be one of the
following:
• Virtual

• Enabled

• Function-Call

• If Action

• Inlined Atomic

• Triggered

FATALBlock
Parameters

For nonvirtual subsystems,
Function packaging
(RTWSystemCode) must be set
to Inline.

FATAL

Check usage of Ports and
Subsystems blocks > Check
Subsystem blocks

5-43

5 Block Constraints

Subsystem, Atomic Subsystem, Enabled Subsystem, Function-Call Subsystem, If
Action Subsystem, Triggered Subsystem

Constraint
FATAL /
Nonfatal Compatibility Check

Action subsystems must not
contain model reference blocks
and/or conditional subsystems.

Nonfatal Check usage of Ports and
Subsystems blocks >Check
Action Subsystem blocks

Other

Actions subsystems connected to
the same If or Switch Case blocks
must do one of the following:
• All combine their output and
code updates.

• All separate their output and
code updates.

Nonfatal Check destinations of If and
Switchcase blocks >Check
destination Action subsystem
of If and Switchcase blocks

Sum, Add, Subtract

Sum

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

Input and output ports should have
the same data type.

Nonfatal

Data Types
and Ports

Blocks must have at lease 2 inports. FATAL

Accumulator data type
(AccumDataTypeStr) must use
the same data type as the block
inputs.

NonfatalBlock
Parameters

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

Nonfatal

Check usage of Math
Operations blocks>Check
Sum blocks

5-44

Block Constraints — Alphabetical List

Switch

Switch

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

The first and third input ports and
the output port must have the same
data type.

Nonfatal

Integer rounding mode
(RndMeth) must be set to Zero ,
Floor, or Ceiling.

NonfatalBlock
Parameters

Allow different data input sizes
(AllowDiffInputSizes) must not
be selected (must be set to off).

Nonfatal

Check usage of Signal Routing
blocks > Check Switch blocks

Switch Case

Switch Case

Constraint
FATAL /
Nonfatal Compatibility Check

Data Types Constraints that apply to all blocks.

Case conditions
(CaseConditions) must not
have a range of values for the input.

Nonfatal

Block destination must not be a
terminator block or an empty action
subsystem.

Nonfatal

Block
Parameters

Source of Inport 1 must not:
• Be a Constant block.

• Have a constant sample time.

Nonfatal

Check usage of Ports and
Subsystems blocks >Check
SwitchCase blocks

5-45

5 Block Constraints

Terminator

Terminator

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Block
Parameters

Block must not be connected to a
model reference block.

Nonfatal

Check usage of Sinks blocks >
Check Terminator blocks

Trigger

Trigger

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.

In the parent subsystem, the signal
entering the trigger port must be
a scalar.

Nonfatal

Data Types

In the parent subsystem, the signal
entering the trigger port must be
boolean when the Trigger type
(TriggerType) is set to rising,
falling, or either.

Nonfatal

Show output port
(ShowOutputPort) must not be
selected (must be set to off).

Nonfatal

Block must be not be in the
root diagram of the model when
Trigger type (TriggerType) is set
to rising, falling, or either.

FATAL

Block
Parameters

Check usage of Ports and
Subsystems blocks >Check
Trigger Port blocks

5-46

Block Constraints — Alphabetical List

Trigger

Constraint
FATAL /
Nonfatal Compatibility Check

States when enabling
(StatesWhenEnabling) must
not be set to inherit.

Nonfatal

The signal entering the Trigger
Port of the parent subsystem must
not:
• Be from a constant block.

• Have a constant sample time.

Nonfatal

Trigonometric Function

Trigonometric Function

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

No block-specific constraints

Function (Operator) must not
be set to cos + jsin (complex
exponential of the input).

NonfatalBlock
Parameters

Approximation method
(ApproximationMethod) must
be set to None.

Nonfatal

Check usage of Math
Operations blocks > Check
Trigonometry blocks

5-47

5 Block Constraints

Unit Delay

Unit Delay

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

State must have storage class Auto.
Values other than Auto require use
of storage classes, which are not
supported for code inspection.

Nonfatal

Block
Parameters

Initial conditions (X0) must not:
be empty, be nonfinite, have a
MATLAB structure as a value,
be complex, have two or more
dimensions, or specify the range (:)
operator.

FATAL

Check usage of Discrete
blocks > Check Unit Delay
blocks

Vector Concatenate

Vector Concatenate

Constraint
FATAL /
Nonfatal Compatibility Check

Constraints that apply to all blocks.Data Types

Block inports and outports must be
scalars or vectors.

Nonfatal

Block
Parameters

Mode (Mode) must be set to Vector. Nonfatal

Check usage of Signal
Routing blocks > Check
Vector Concatenate blocks

5-48

Supported Blocks — By Category

Supported Blocks — By Category

In this section...

“Commonly Used Blocks” on page 5-49

“Discontinuity Blocks” on page 5-50

“Discrete Blocks” on page 5-50

“Logic and Bit Operation Blocks” on page 5-50

“Lookup Tables” on page 5-50

“Math Operation Blocks” on page 5-51

“Model-Wide Utilities” on page 5-51

“Port & Subsystem Blocks” on page 5-51

“Signal Attribute Blocks” on page 5-52

“Signal Routing Blocks” on page 5-52

“Sink Blocks” on page 5-53

“Source Blocks” on page 5-53

“User-Defined Functions” on page 5-53

Commonly Used Blocks

• “Bus Creator” on page 5-10

• “Bus Selector” on page 5-11

• “Constant” on page 5-11

• “Data Type Conversion” on page 5-15

• “Demux” on page 5-18

• “Gain” on page 5-20

• “Ground” on page 5-21

• “Inport” on page 5-22

• “Logical Operator” on page 5-23

5-49

5 Block Constraints

• “Mux” on page 5-29

• “Outport” on page 5-30

• “Product” on page 5-31

• “Relational Operator” on page 5-33

• “Saturation” on page 5-34

• “Subsystems” on page 5-43

• “Sum, Add, Subtract” on page 5-44

• “Switch” on page 5-45

• “Terminator” on page 5-46

• “Unit Delay” on page 5-48

Discontinuity Blocks

• “Saturation” on page 5-34

Discrete Blocks

• “Unit Delay” on page 5-48

• “Discrete-Time Integrator” on page 5-16

Logic and Bit Operation Blocks

• “Logical Operator” on page 5-23

• “Relational Operator” on page 5-33

• “Shift Arithmetic” on page 5-37

Lookup Tables

• “1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1 or 2-D)” on
page 5-23

5-50

Supported Blocks — By Category

Math Operation Blocks

• “Abs” on page 5-8

• “Gain” on page 5-20

• “Math Function” on page 5-26

• “MinMax” on page 5-27

• “Product” on page 5-31

• “Reshape” on page 5-33

• “Rounding Function” on page 5-34

• “Sign” on page 5-38

• “Sqrt ” on page 5-39

• “Sum, Add, Subtract” on page 5-44

• “Trigonometric Function” on page 5-47

Model-Wide Utilities

• “DocBlock” on page 5-18

• “Model Info” on page 5-28

Port & Subsystem Blocks

• “Action Port” on page 5-9

• “Enable Port” on page 5-18

• “Function-Call Generator” on page 5-19

• “If” on page 5-21

• “Inport” on page 5-22

• “Model” on page 5-28

• “Outport” on page 5-30

• “Subsystems” on page 5-43

• “Switch Case” on page 5-45

5-51

5 Block Constraints

• “Trigger” on page 5-46

Signal Attribute Blocks

• “Data Type Conversion” on page 5-15

• “Data Type Duplicate” on page 5-15

• “Data Type Propagation” on page 5-16

• “Probe” on page 5-30

• “Signal Conversion” on page 5-38

• “Signal Specification” on page 5-38

Signal Routing Blocks

• “Bus Assignment” on page 5-10

• “Bus Creator” on page 5-10

• “Bus Selector” on page 5-11

• “Data Store Memory” on page 5-12

• “Data Store Read” on page 5-13

• “Data Store Write” on page 5-14

• “Demux” on page 5-18

• “From” on page 5-19

• “Goto” on page 5-21

• “Merge” on page 5-27

• “Multiport Switch” on page 5-28

• “Mux” on page 5-29

• “Selector” on page 5-35

• “Switch” on page 5-45

• “Vector Concatenate” on page 5-48

5-52

Supported Blocks — By Category

Sink Blocks

• “Outport” on page 5-30

• “Terminator” on page 5-46

Source Blocks

• “Constant” on page 5-11

• “Ground” on page 5-21

• “Inport” on page 5-22

User-Defined Functions

• “S-Function” on page 5-35

5-53

5 Block Constraints

5-54

6

Model Advisor Checks

6 Model Advisor Checks

Simulink Code Inspector Checks

In this section...

“Simulink® Code Inspector™ Checks Overview” on page 6-4

“Check code generation settings” on page 6-5

“Check data import/export settings” on page 6-10

“Check diagnostic settings” on page 6-11

“Check hardware implementation settings” on page 6-13

“Check optimization settings” on page 6-15

“Check solver settings” on page 6-18

“Check for unconnected objects in the model” on page 6-19

“Check system target file setting” on page 6-20

“Check function specification setting” on page 6-21

“Check for Stateflow machine data” on page 6-22

“Check for Stateflow machine events” on page 6-23

“Check conditional input branch execution setting” on page 6-24

“Check for unsupported blocks” on page 6-25

“Check storage class for workspace variables” on page 6-26

“Check for sample times in the model” on page 6-27

“Check for Signal Conversion blocks automatically inserted on signals
entering block input ports” on page 6-28

“Check for usage of fixed-point instrumentation” on page 6-29

“Check for root Outport blocks being conditionally assigned” on page 6-30

“Check for usage of synthesized local data stores” on page 6-31

“Check loop unrolling threshold setting” on page 6-31

“Check usage of global data stores” on page 6-33

“Check destinations of If and Switchcase blocks” on page 6-34

6-2

Simulink® Code Inspector™ Checks

In this section...

“Check for root Outport blocks that have non-auto storage class” on page
6-35

“Check usage of Sources blocks” on page 6-35

“Check usage of Signal Routing blocks” on page 6-40

“Check usage of Math Operations blocks” on page 6-59

“Check usage of Signal Attributes blocks” on page 6-74

“Check usage of Logical and Bit Operations blocks” on page 6-80

“Check usage of Lookup Tables blocks” on page 6-86

“Check usage of User-Defined Function blocks” on page 6-90

“Check usage of Ports and Subsystems blocks” on page 6-92

“Check usage of Discontinuities blocks” on page 6-103

“Check usage of Sinks blocks” on page 6-106

“Check usage of Discrete blocks” on page 6-110

“Check usage of Stateflow blocks” on page 6-115

“Check usage of Stateflow charts” on page 6-117

“Check usage of Stateflow transitions” on page 6-119

“Check usage of Stateflow junctions” on page 6-121

“Check usage of Stateflow data” on page 6-122

“Check usage of Stateflow events” on page 6-124

“Check usage of root Outport blocks” on page 6-125

“Check usage of buses” on page 6-126

6-3

6 Model Advisor Checks

Simulink Code Inspector Checks Overview
Use Simulink Code Inspector Model Advisor checks to configure your model
for code inspection.

See Also

• “Consult the Model Advisor”

• “Simulink Checks”

• “Embedded Coder™ Checks”

• “Simulink Verification and Validation™ Checks”

6-4

Simulink® Code Inspector™ Checks

Check code generation settings
Check code generation settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that code generation settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’Language’
setting

The model is configured to generate
C++ (Encapsulated) files.

In the Configuration Parameters
dialog box, on the Code Generation
pane, set Language to C or C++.

Verify
’Shared code
placement’
setting

The model is not configured to
generated shared utility code to a
shared location. If shared utility
code is generated into model.c, the
Code Inspector reports the code as
unverified.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Shared code
placement to Shared location.
Using a shared location for utility
functions, macros, and user-defined
data types promotes debugging and
traceability of generated code.

Verify ’Source
file’ setting

Custom code is configured to appear
near the top of the generated model
source file.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code pane, clear the
Source file field.

Verify ’Header
file’ setting

Custom code is configured to appear
near the top of the generated model
header file.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code pane, clear the
Header file field.

Verify
’Initialize
function’
setting

Custom code is configured to appear
in the generated model initialize
function.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code pane, clear the
Initialize function field.

6-5

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify
’Terminate
function’
setting

Custom code is configured to appear
in the generated model terminate
function.

In the Configuration Parameters
dialog box, on the Code Generation
> Custom Code and clear the
Terminate function field.

Verify
’Combine
signal/state
structures’
setting

The model is configured to combine
global block signals and global state
data into one data structure in the
generated code. This is not supported
for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the
Combine signal/state structures
parameter.

Verify ’Include
comments’
setting

The model is configured to omit
autogenerated comments from
generated code files. The Code
Inspector parses autogenerated
comments to obtain traceability
information about model data.

In the Configuration Parameters
dialog box, on the Code Generation
> Comments pane, select Include
comments.

Verify
’Generate
scalar inlined
parameter as’
setting

The model is configured to generate
scalar inlined parameters as
variables with #define macros,
rather than as numeric constants.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set Generate
scalar inlined parameter as to
Literals.

Verify
’Preserve
condition
expression in
if statement’
setting

The model is configured to optimize
empty primary condition expressions
in if statements by negating them,
rather than preserving the empty
primary condition expressions.

In the Configuration Parameters
dialog box, on the Code Generation
> Code Style pane, select Preserve
condition expression in if
statement.

Verify ’Replace
data type
names in the
generated code’
setting

The model is configured to replace
built-in data type names with
user-defined data type names in
the generated code. Data type
replacement is not supported for code
inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Data Type Replacement pane,
clear the Replace data type names
in the generated code parameter.

6-6

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Code
replacement
library’ setting

A code replacement library other
than C89/C90 (ANSI), ANSI_C, C99
(ISO), or ISO_C is selected for the
model.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Code
replacement library to C89/C90
(ANSI), ANSI_C, C99 (ISO), or
ISO_C. The check fails if you do not
select C89/C90 (ANSI), ANSI_C, C99
(ISO), or ISO_C. However, if you
create your library using “Supported
Functions and Operations in Code
Replacement Libraries” on page 4-22,
Simulink Code Inspector does inspect
the generated code.

Verify ’Classic
call interface’
setting

The model is configured to generate
model function calls compatible
with the main program module of a
pre-R2011a GRT target. The classic
call interface is not supported for
code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the Classic
call interface parameter.

Verify ’Single
output/update
function’
setting

The model is configured to generate
code in separate model_output and
model_update functions, rather than
a model_step function that combines
the two.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, select Single
output/update function.

Verify
’Terminate
function
required’
setting

The model is configured to generate
a model_terminate function,
potentially containing model
termination code to be executed
during system shutdown. This is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the
Terminate function required
parameter.

Verify
’Generate
reusable code’
setting

The model is not configured to
generate reusable, multi-instance
code that is reentrant. This
parameter is applicable only to the
top model in a model hierarchy.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, select Generate
reusable code.

6-7

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify
’MAT-file
logging’ setting

The model is configured to log
execution data to a MAT-file. This is
not supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear theMAT-file
logging parameter.

Verify
’non-finite
numbers’
setting

The model is configured to generate
nonfinite data (for example, NaN and
Inf) and related operations. This is
not supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the Support:
non-finite numbers parameter.

Verify ’absolute
time’ setting

The model is configured to generate
and maintain integer counters for
absolute and elapsed time values.
This is not supported for code
inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, clear the Support:
absolute time parameter.

Verify
’Suppress
error status in
real-timemodel
data structure’
setting

The model is configured to include
an error status field in a generated
rtModel data structure. The rtModel
data structure is not supported for
code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, select Suppress
error status in real-time model
data structure.

Verify
’IncludeERT-
FirstTime’
setting

The model is configured to include
the firstTime argument in the
generated model_initialize
function. This is not supported for
code inspection.

In the MATLAB Command
Window, set the model parameter
IncludeERTFirstTime to off.
For example, set_param(gcs,
'IncludeERTFirstTime', 'off').

Verify ’Pass
root-level I/O
as’ setting

The model is configured to use packed
structures, rather than individual
arguments, to pass root-level model
input and output values to the
model_step function. This is not
supported for code inspection. This
parameter is applicable only to the
top model in a model hierarchy.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Pass
root-level I/O as to Individual
arguments.

6-8

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Create
block’ setting

The model is configured to generate
a SIL or PIL block during code
generation. This is not supported for
code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Verification pane, set Create
block to None.

Verify ’Measure
function
execution
times’ setting

The model is configured to generate
code with instrumentation to collect
execution times for functions inside
the generated code. This is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Verification pane, clear the
Measure function execution
times parameter.

Verify ’Signal
naming’ setting

The model is configured to change
signal names when creating
corresponding identifiers in the
generated code.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set Signal naming
to None.

Verify
’Parameter
naming’ setting

The model is configured to change
parameter names when creating
corresponding identifiers in the
generated code.

In the Configuration Parameters
dialog box, on the Code Generation
> Symbols pane, set Parameter
naming to None.

Verify ’TLC
options’ setting

The model is configured with TLC
options.

In the Configuration Parameters
dialog box, on the Code Generation
pane, clear the TLC options field.

Verify Code
Generation
> Interface
> Interface
setting

The model is configured to generate
code for C API, external mode, or
ASAP2 data interfaces. This is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, set Interface to
None.

See Also
Simulink Configuration Parameter Constraints

6-9

6 Model Advisor Checks

Check data import/export settings
Check data import/export settings in the model configuration that might
impact compatibility with Simulink Code Inspector.

Description
This check verifies that data import/export settings are compatible with
code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Initial
state’ setting

The model is configured to load initial
states from a workspace, which is not
compatible with code inspection.

In the Configuration Parameters
dialog box, on the Data
Import/Export pane, clear the
Initial state parameter.

See Also
Simulink Configuration Parameter Constraints

6-10

Simulink® Code Inspector™ Checks

Check diagnostic settings
Check diagnostic settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that diagnostic settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’Invalid root
Inport/Outport
block
connection’
setting

The model is not configured to
generate an error if Simulink
software detects invalid internal
connections to the root-level Inport
or Outport blocks. This potentially
allows automatic insertion of hidden
signal copy blocks at the model
inports and outports, which is not
supported for code inspection.

In the Configuration Parameters
dialog box, on the Diagnostics
> Model Referencing pane, set
Invalid root Inport/Outport block
connection to error. If an error is
generated, it identifies the locations
at which you can manually insert
Signal Conversion blocks to avoid the
error and maintain traceability.

Verify
’Underspecified
initialization
detection’
setting

The model is not configured to
initialize block initial conditions
using simplified behavior. The
simplified behavior can improve the
consistency of model results.

In the Configuration Parameters
dialog box, on the Diagnostics
> Data Validity pane, set
Underspecified initialization
detection to Simplified.

Verify ’Non-bus
signals treated
as bus signals’
setting

The model is not configured to
generate an error when Simulink
software implicitly converts a
non-bus signal to a bus signal to
support connecting the signal to a
Bus Assignment or Bus Selector
block.

In the Configuration Parameters
dialog box, on the Diagnostics >
Connectivity pane, set Non-bus
signals treated as bus signals to
error.

Verify ’Detect
downcast’
setting

The model is not configured to
generate an error when a parameter
downcast occurs during simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
downcast to error.

6-11

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify ’Detect
overflow’
setting

The model is not configured to
generate an error when a parameter
overflow occurs during simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
overflow to error.

Verify ’Detect
underflow’
setting

The model is not configured to
generate an error when a parameter
underflow occurs during simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
underflow to error.

Verify ’Detect
precision loss’
setting

The model is not configured to
generate an error when parameter
precision loss occurs during
simulation.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect
precision loss to error.

Verify ’Detect
loss of
tunability’
setting

The model is not configured
to generate an error when an
expression with tunable variables is
reduced to its numerical equivalent.

In the Configuration Parameters
dialog box, on the Diagnostics >
Data Validity pane, set Detect loss
of tunability to error.

Verify Bus
signal treated
as vector
setting

The model is not configured to
generate an error when Simulink
software detects a virtual bus signal
that is used as a mux signal. Strict
bus behavior is not enforced.

In the Configuration Parameters
dialog box, on the Diagnostics >
Connectivity pane, set Bus signal
treated as vector to error.

See Also
Simulink Configuration Parameter Constraints

6-12

Simulink® Code Inspector™ Checks

Check hardware implementation settings
Check hardware implementation settings in the model configuration that
might impact compatibility with Simulink Code Inspector.

Description
This check verifies that hardware implementation settings are compatible
with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’char’
setting

The bit length of character data for
the production hardware does not
equal 8.

Verify ’short’
setting

The bit length of short data for the
production hardware does not equal
16.

Verify ’int’
setting

The bit length of int data for the
production hardware does not equal
32.

Verify ’long’
setting

The bit length of long data for the
production hardware does not equal
32.

Verify ’float’
setting

The bit length of floating-point data
for the production hardware does not
equal 32.

Verify ’double’
setting

The bit length of double data for the
production hardware does not equal
64.

Verify ’pointer’
setting

The bit length of pointer data for the
production hardware does not equal
32.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, select a
production hardware Device type
that is compatible with the settings
in this table.

6-13

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify ’native’
setting

The microprocessor native word size
for the production hardware does not
equal 32 bits.

Verify ’Signed
integer
division rounds
to’ setting

The method of producing a signed
integer quotient for the production
hardware is not to choose the integer
that is closer to zero (Zero method).

Verify ’Shift
right on a
signed integer
as arithmetic
shift’ setting

The method by which the compiler
implements signed integer right shift
for the production hardware is not an
arithmetic right shift.

Verify ’None’
setting

The test hardware differs from the
deployment hardware.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, under
Emulation hardware (code
generation only), select None.

Verify ’Device
vendor->Device
type‘ setting

The device vendor and device type
are ASIC/FPGA.

In the Configuration Parameters
dialog box, on the Hardware
Implementation pane, under
Embedded hardware (simulation
and code generation), do not select
Device vendor ASIC/FPGA.

See Also
Simulink Configuration Parameter Constraints

6-14

Simulink® Code Inspector™ Checks

Check optimization settings
Check optimization settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that optimization settings are compatible with code
inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
’AdvancedOptControl’
setting

The model is not configured to disable
optimizations that are incompatible
with Simulink Code Inspector.

In the MATLAB Command
Window, set the model parameter
AdvancedOptControl to -SLCI.
For example, set_param(gcs,
'AdvancedOptControl', '-SLCI').

Verify
’Implement
logic signals as
Boolean data
(vs. double)’
setting

The model is configured to implement
logic signals with the double data
type, rather than with the more
memory-efficient boolean data type.

In the Configuration Parameters
dialog box, on the Optimization
pane, select Implement logic
signals as Boolean data (vs.
double).

Verify
’Optimize
initialization
code for model
reference’
setting

The model is configured to generate
initialization code for blocks that
have states, without an optimization
that can produce more efficient code
for referenced models.

In the Configuration Parameters
dialog box, on the Optimization
pane, select Optimize
initialization code for model
reference.

Verify ’Inline
invariant
signals’ setting

The model is configured to use
symbolic names (instead of inline
numerical values) for invariant
signals in generated code.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
select Inline invariant signals.

6-15

6 Model Advisor Checks

Subcheck Condition Recommended Action

Verify ’Remove
code from
floating-point
to integer
conversions
that wraps
out-of-range
values’ setting

The model is configured not to
remove wrapping code that handles
out-of-range floating-point to integer
conversion results when out-of-range
conversions occur.

In the Configuration Parameters
dialog box, on the Optimization
pane, select Remove code
from floating-point to integer
conversions that wraps
out-of-range values.

Verify ’Remove
code from
floating-point
to integer
conversions
with saturation
that maps NaN
to zero’ setting

The model is configured to remove
code that handles floating-point to
integer conversion results for NaN
values when mapping from NaN to
integer zero occurs.

In the Configuration Parameters
dialog box, on the Optimization
pane, clear the Remove code
from floating-point to integer
conversions with saturation that
maps NaN to zero parameter.

Verify ’Remove
code that
protects
against
division
arithmetic
exceptions’
setting

The model is configured to remove
code that guards against division by
zero for fixed-point data.

In the Configuration Parameters
dialog box, on the Optimization
pane, clear the Remove code
that protects against division
arithmetic exceptions parameter.

Verify
‘Maximum
stack size
(bytes)’ setting

The model is configured with a
maximum stack size.

In the Configuration Parameters
dialog box, on the Optimization >
Signals and Parameters pane, set
the Maximum stack size (bytes)
to inf.

6-16

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Verify ’Pack
Boolean data
into bitfields’
setting

The model is configured to store
Boolean signals as one-bit bitfields.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
clear the Pack Boolean data into
bitfields parameter.

Verify ’Simplify
array indexing’
setting

The model is configured to generate
code that replaces multiply
operations with add operations in
array indices when accessing arrays
in a loop.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
clear the Simplify array indexing
parameter.

See Also
Simulink Configuration Parameter Constraints

6-17

6 Model Advisor Checks

Check solver settings
Check solver settings in the model configuration that might impact
compatibility with Simulink Code Inspector.

Description
This check verifies that solver settings are compatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify ’Type’
setting

The model is configured with a
variable-step solver.

In the Configuration Parameters
dialog box, on the Solver pane, set
Type to Fixed-step.

Verify ’Solver’
setting

The model is configured with a solver
other than a fixed-step discrete
solver.

In the Configuration Parameters
dialog box, on the Solver pane,
set Solver to discrete (no
continuous states) (equivalent to
FixedStepDiscrete specified at the
command line).

See Also
Simulink Configuration Parameter Constraints

6-18

Simulink® Code Inspector™ Checks

Check for unconnected objects in the model
Check for unconnected ports and lines in the model.

Description
This check reports unconnected lines, input ports, and output ports in the
model or subsystem.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
unconnected
objects

One or more lines, input ports,
or output ports are not properly
connected in the model or subsystem.
This can result in dead code or hidden
ground blocks.

Connect or remove the affected
blocks.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-19

6 Model Advisor Checks

Check system target file setting
Check whether a compatible system target file is selected for the model.

Description
This check verifies that the System target file selected for the model is
ert.tlc or is derived from ert.tlc.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify system
target file
setting

The system target file selected for
the model is not ert.tlc or an
ERT-derived target.

In the Configuration Parameters
dialog box, on the Code Generation
pane, set System target file to
ert.tlc or an ERT-derived target.

See Also
Simulink Configuration Parameter Constraints

6-20

Simulink® Code Inspector™ Checks

Check function specification setting
Check for function specification settings that might impact compatibility
with Simulink Code Inspector.

Description
This check verifies that function prototype control settings are compatible
with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check model
interface
settings

The model specifies custom function
prototypes for model entry functions.
This is not supported for code
inspection.

In the Configuration Parameters
dialog box, on the Code Generation
> Interface pane, click Configure
Model Functions to open the
Model Interface dialog box, and
set Function specification to
Default model initialize and
step functions.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-21

6 Model Advisor Checks

Check for Stateflow machine data
Check the model for Stateflow data of machine scope. Data of machine scope
is incompatible with Simulink Code Inspector

Description
This check verifies that the model does not contain Stateflow data of machine
scope.

Results and Recommended Actions

Subcheck Condition Recommended Action

All Stateflow
data must be
parented by a
Stateflow chart

The model contains Stateflow data of
machine scope.

Modify model so that it does not
contain Stateflow data of machine
scope.

See Also
“Data Specification”

6-22

Simulink® Code Inspector™ Checks

Check for Stateflow machine events
Check the model for Stateflow events of machine scope. Events of machine
scope are incompatible with Simulink Code Inspector

Description
This check verifies that the model does not contain Stateflow events of
machine scope.

Results and Recommended Actions

Subcheck Condition Recommended Action

All Stateflow
events must be
parented by a
Stateflow chart

The model contains Stateflow events
of machine scope.

Modify model so that it does not
contain Stateflow events of machine
scope.

See Also
“Input and Output Events”

6-23

6 Model Advisor Checks

Check conditional input branch execution setting
If the model is using conditional input branch execution, check that local
block outputs are enabled.

Description
This check verifies that the model configuration parameter Enable local
block outputs is selected when Conditional input branch execution is
selected.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
conditional
input branch
execution
setting

The model configuration parameter
Conditional input branch
execution is selected, but Enable
local block outputs is not selected.
The model must enable local block
outputs when using conditional input
branch execution.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
select Enable local block outputs.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-24

Simulink® Code Inspector™ Checks

Check for unsupported blocks
Check for blocks that are not supported by Simulink Code Inspector.

Description
This check updates the model diagram and reports blocks that are not
supported by Simulink Code Inspector.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
blocks not
supported by
Simulink Code
Inspector

One or more blocks in the model are
not supported for code inspection.

Note Supported blocks are listed in
“Supported Blocks — By Category”
on page 5-49, and also can be viewed
in the slcilib block library.

Possible actions include:

• Replace an unsupported block
with a supported block.

• Replace an unsupported block
with an equivalent combination of
supported blocks.

• Replace an unsupported block
with an S-Function block created
using the Legacy Code Tool.

• If one or more unsupported blocks
cannot be removed, use referenced
models to isolate the unsupported
block(s), and/or use a partial
verification work flow that omits
the unsupported block(s).

See Also

• “Fix or Work Around Unsupported Blocks”

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-25

6 Model Advisor Checks

Check storage class for workspace variables
Check for workspace variables referenced by the model.

Description
This check reports workspace variables that use unsupported storage classes.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check storage
class for
workspace
variables
referenced by
the model

Workspace variables referenced by
the model are not supported for one
or both of these reasons:
• The “Custom Storage Classes”
Type is not set to Unstructured.

• Workspace variable is tunable,
with data type set to struct.

Modify the model so that the
model does not reference workspace
variables or set the workspace
variable Type to Unstructured.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-26

Simulink® Code Inspector™ Checks

Check for sample times in the model
Check for sample time characteristics that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports instances of multiple,
variable, continuous, or asynchronous sample times.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check sample
times

The model is using multiple, variable,
continuous, or asynchronous sample
times. This is not supported for code
inspection.

Modify the model such that
multiple, variable, continuous, or
asynchronous sample times are not
being used.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-27

6 Model Advisor Checks

Check for Signal Conversion blocks automatically
inserted on signals entering block input ports
Check for hidden Signal Conversion blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports hidden Signal Conversion
blocks that have been automatically inserted on signals entering block input
ports.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify no
Signal
Conversion
blocks are
automatically
inserted
on signals
entering block
inports

A hidden Signal Conversion block
has been automatically inserted on
a signal entering a block inport.
Hidden Signal Conversion blocks are
not supported for code inspection.

Manually insert a Signal Conversion
block on the signal entering the block
inport, and configure the Signal
Conversion block to be excluded from
block reduction.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-28

Simulink® Code Inspector™ Checks

Check for usage of fixed-point instrumentation
Check for usage of fixed-point instrumentation that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports fixed-point
instrumentation incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify usage
of fixed-point
instrumentation

The model configuration
parameter Block reduction
(BlockReduction) is selected,
and the fixed point parameter
Fixed-point instrumentation
mode (MinMaxOverflowLogging) is
set to a value other than Force off.
Simultaneous use of block reduction
and fixed-point instrumentation is
not supported for code inspection.

Open the Fixed-Point Tool and turn
off fixed-point instrumentation for
the model.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-29

6 Model Advisor Checks

Check for root Outport blocks being conditionally
assigned
Check that root outports of submodels are not connected to conditionally
executed subsystems.

Description
This check updates the model diagram and verifies that root outports of
referenced models are not connected to conditionally executed subsystems.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify that root
Outports are
not assigned
conditionally

A root outport of a referenced
model is directly connected to a
conditionally executed subsystem
and the root outport storage class
is set to Auto. Code inspection is
not supported for submodels for
which root outports are assigned by
blocks inside conditionally executed
subsystems.

This check only applies to referenced
models. You can do one of the
following:
• If this model will be the top
model in the hierarchy, in the
Configuration Parameters dialog
box, on the Model Referencing
pane, set Total number of
instances allowed per top
model to Zero, which will
suppress the check.

• Modify the model so that the
root outports are not directly
connected to conditionally
executed subsystems.

• Use a root outport with a storage
class that is not set to Auto.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-30

Simulink® Code Inspector™ Checks

Check for usage of synthesized local data stores
Check for signal objects in the model workspace that are referenced as
synthesized local data stores by Data Store Read or Data Store Write blocks.

Description
This check updates the model diagram and verifies synthesized local
data store usage. If your model has signal objects that are referenced as
synthesized local data stores by Data Store Read or Data Store Write blocks,
Simulink creates a hidden Data Store Memory block at the root level of the
model. This model is incompatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify
synthesized
local data store
usage

Signal objects are referenced as
synthesized local data stores by
Data Store Read or Data Store Write
blocks.

Avoid using signal objects that are
referenced as synthesized local data
stores by Data Store Read or Data
Store Write block. As a possible work
around, create graphical Data Store
Memory blocks to specify the data
stores.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

Check loop unrolling threshold setting
Checks that the model does not have a loop unrolling threshold that might
result in partially unrolled loops in the generated code.

Description
This check updates the model diagram and verifies that the model does not
have a loop unrolling threshold that might result in partially unrolled loops
in the generated code.

6-31

6 Model Advisor Checks

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify loop
unrolling
threshold
setting

The model is configured with a Loop
unrolling threshold that might
result in partially unrolled loops in
the generated code.

In the Configuration Parameters
dialog box, on the Optimization
> Signals and Parameters pane,
set the Loop unrolling threshold
to the value in the Recommended
Action section of the Model Advisor
window.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-32

Simulink® Code Inspector™ Checks

Check usage of global data stores
Checks that global Data Store Memory blocks use inlined parameters with
non-tunable initial values.

Description
This check updates the model diagram and verifies global data store usage.
If your model has Data Store blocks with parameters that are not inlined or
have tunable initial values, it is incompatible with code inspection.

Results and Recommended Actions

Subcheck Condition Recommended Action

Configuration parameter
Optimization > Signals and
Parameters >Inline parameters
(InlineParams) is not selected.

SelectOptimization > Signals and
Parameters >Inline parameters.

Verify global
data store
usage

Initial value (InitialValue) must
not be tunable.

Fix the Initial value setting.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-33

6 Model Advisor Checks

Check destinations of If and Switchcase blocks
Check usage of If and Switch Case blocks connected to Action subsystems that
might impact compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and verifies the usage of If and Switch
Case blocks connected to Action subsystems.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check
destination
Action
subsystem of If
and Switchcase
blocks

Action subsystems connected to the
same If or Switch Case blocks do not
do one of the following:
• All combine their output and code
updates.

• All separate their output and code
updates.

Modify the listed Action subsystems
so that they all combine their
output and code updates. Place a
Signal Conversion block on signals
leaving the inports within the
Action subsystems. Select the
Signal Conversion block parameter
Exclude this block from ‘Block
reduction’ optimization to exclude
it from block reduction.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-34

Simulink® Code Inspector™ Checks

Check for root Outport blocks that have non-auto
storage class
Check usage of root outport blocks in referenced model that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and verifies the usage of root outport
blocks in referenced models.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify that the
storage class of
root outports is
supported

Pass reusable subsystem outputs
as: is not set to Structure
reference when root outports in
referenced models have non-auto
storage class.

Set Pass reusable subsystem
outputs as: to Structure
reference.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

Check usage of Sources blocks
Check for usage of Sources blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Sources blocks.

6-35

6 Model Advisor Checks

Results and Recommended Actions

Subcheck Condition Recommended Action

The block cannot specify
variable-dimension signals. Block
parameter Variable-size signal
(VarSizeSig) is set to Yes.

Set Variable-size signal to No.

Block parameter Signal Type
(SignalType) is set to complex.

Set Signal Type to real or auto.

Block parameter Sampling Mode
(SamplingMode) is set to Frame
based.

Set Signal Type to Sample based
or auto.

For inports in triggered
subsystems, Latch input
be delaying outside signal
(LatchByDelayingOutsideSignal) is
selected (set to on).

Clear Latch input be delaying
outside signal. To retain the
latching behavior, restructure the
model by placing a Unit Delay block
before the input block in the parent
diagram.

Check Inport
blocks

Note This will
check shadowed
inports if you
have any in your
model.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-36

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block parameter Constant value
(Value) is empty, is nonfinite, has
a MATLAB structure as a value, is
complex, has two or more dimensions,
or specifies the range (:) operator.

Fix the Constant value setting.Check
Constant
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including

Fix the listed block inport or outport.

6-37

6 Model Advisor Checks

Subcheck Condition Recommended Action

other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Ground
blocks

Violates a constraint that applies to
all blocks:

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

Fix the listed block inport or outport.

6-38

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-39

6 Model Advisor Checks

Check usage of Signal Routing blocks
Check for usage of Signal Routing blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Signal Routing blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check Bus
Creator blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

6-40

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Bus
Selector blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

6-41

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Bus
Assignment
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

6-42

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

The block state does not have storage
class Auto. Values other than Auto
require use of storage classes, which
are not supported for code inspection.

Modify the block such that its code
generation storage class is set to
Auto. If the block state name does not
resolve to a signal object, set Storage
Class in the State Attributes tab
of the block parameter dialog box to
Auto. If the block state name does
resolve to a signal object, set the
CoderInfo.StorageClass property
of the signal object to Auto.

Block parameter Initial value
(InitialValue) is empty, is
nonfinite, has a MATLAB structure
as a value, is complex, has two or
more dimensions, or specifies the
range (:) operator.

Fix the Initial value setting.

Block parameter Signal type
(SignalType) is set to complex.
Complex values are not supported for
code inspection.

Set Signal type to auto or real.

Check Data
Store Memory
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,

Fix the listed block inport or outport.

6-43

6 Model Advisor Checks

Subcheck Condition Recommended Action

int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-44

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

The block cannot specify
elements. Block parameter
Specify element(s) to select
(DataStoreElements) is set to a
nonempty string.

Clear element selections from the
Element Selection tab of the block
dialog box.

Check Data
Store Read
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

Fix the listed block inport or outport.

6-45

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

The block cannot specify
elements. Block parameter
Specify element(s) to select
(DataStoreElements) is set to a
nonempty string.

Clear element selections from the
Element Selection tab of the block
dialog box.

Check Data
Store Write
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

6-46

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check From
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

6-47

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Goto
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

Fix the listed block inport or outport.

6-48

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Initial output is set to an
unsupported value.

Set Initial output to 0.

Allow unequal port widths
(AllowUnequalInputPortWidths) is
selected.

Clear the Allow unequal port
widths parameter.

Input port offsets is set to an
unsupported value.

Set Input port offsets to [].

Check Merge
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-49

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

The first and third input ports and
the output port do not have the same
data type.

Modify the data ports to have the
same data type. Consider selecting
the block parameter Require all
data port inputs to have the same
data type.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Allow
different data input sizes
(AllowDiffInputSizes) is selected.

Clear the Allow different data
input sizes parameter.

Check Switch
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,

Fix the listed block inport or outport.

6-50

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-51

6 Model Advisor Checks

Subcheck Condition Recommended Action

Data input and output ports do not
have the same data type.

Modify the data ports to have the
same data type. Consider selecting
the block parameter Require
alldata port inputs to have the
same data type.

Multiport Switch blocks must have
at least three inports.

Reconfigure the block to have at least
three inports.

Data port indices are specified and
an input has more than one value.

Modify the data port configuration so
that only one value is specified per
input.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Block parameter Allow
different data input sizes
(AllowDiffInputSizes) is selected.

Clear the Allow different data
input sizes parameter.

Block parameter Data port for
default case (DataPortForDefault)
is not set to Last data port.

Set Data port for default case to
Last data port.

Check
Multiport
Switch blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

6-52

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Mux
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

6-53

6 Model Advisor Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Demux
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

6-54

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Uses multidimensional input, or
uses port-based indexing instead of
specifying indices using the block
dialog.

Configure the block to use
one-dimensional inputs, and
specify indices using the block dialog.
Set block parameter Index Option
to Select all, Index vector
(dialog), or Starting index
(dialog).

Block inport or outport is not a scalar
or vector.

Configure the listed block to use
scalar or vector inports and outports.

Check Selector
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,

Fix the listed block inport or outport.

6-55

6 Model Advisor Checks

Subcheck Condition Recommended Action

int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-56

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Block parameterMode (Mode) is not
set to Vector.

Set Mode to Vector.

Block inports and outports are not
scalars or vectors.

Configure the inports and outports to
be scalars or vectors.

Check Vector
Concatenate
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Fix the listed block inport or outport.

6-57

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-58

Simulink® Code Inspector™ Checks

Check usage of Math Operations blocks
Check for usage of Math Operations blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Math Operations blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Absolute
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

6-59

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Gain (Gain) is
empty, is nonfinite, has a MATLAB
structure as a value, is complex, has
two or more dimensions, or specifies
the range (:) operator.

Fix the Gain setting.

Block parameter Parameter data
type (ParamDataTypeStr) does not
use the same data type as the Gain
block input.

Modify the Gain block to use the same
data type for its input and parameter.
Consider setting Parameter data
type to Inherit: Same as input.

Block parameter Multiplication
(Multiplication) is not set to
Element-wise(K.*u), Matrix(K*u),
Matrix(u*K), or Matrix(K*u)(u
vector).

Set Multiplication to
Element-wise(K.*u), Matrix(K*u),
Matrix(u*K), or Matrix(K*u)(u
vector).

Only single or double data types
are supported for Matrix(K*u),
Matrix(u*K), or Matrix(K*u)(u
vector) multiplications methods.

Check Gain
blocks

6-60

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Fix the listed block inport or outport.

6-61

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Function (Operator) is set to
an unsupported value: conj or
hermitian.

Set Function to one of the
following values: exp, log, 10^u,
log10, magnitude^2, square,
transposepow, reciprocal, hypot,
rem, or mod.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Math
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

Fix the listed block inport or outport.

6-62

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Multiplication
(Multiplication) is not set to
Element-wise(.*) or Matrix (*).

Set Multiplication to
Element-wise(.*) or Matrix
(*).

Only single or double data types
are supported for Matrix (*)
multiplication.

Block parameter Number of inputs
(inputs) is not set to 2, **, /*, */,
//, or / when both of the following
are true:

• Inport Signal type is a matrix.

• Product block parameter
Multiplication is set to Matrix
(*).

Set Number of inputs to 2, **, /*,
*/, //, or / if both of the following
are true:

• Inport Signal type is a matrix.

• Product block parameter
Multiplication is set to Matrix
(*).

Block parameter Number of inputs
(inputs) is not set to 2, **, /*, */,
or // when both of the following are
true:

Set Number of inputs to 2, **, /*,
*/, or // if both of the following are
true:

Check Product
blocks

6-63

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Inport Signal type is a scalar or
vector.

• Product block parameter
Multiplication is set to
Element-wise(.*).

• Inport Signal type is a scalar or
vector.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Block parameter Number of inputs
(inputs) is not set to / when both of
the following are true:

• Inport Signal type is a scalar.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Set Number of inputs to / if both of
the following are true:

• Inport Signal type is a scalar.

• Product block parameter
Multiplication is set to
Element-wise(.*).

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-64

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Accumulator data
type (AccumDataTypeStr) does not
use the same data type as the block
inputs.

Modify the block to use the same data
type for its inputs and accumulator.
Consider setting Accumulator data
type to Inherit: Same as first
input.

Block does not have at least 2 inports. Configure the model so that there are
2 inports to the block.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Sum
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,

Fix the listed block inport or outport.

6-65

6 Model Advisor Checks

Subcheck Condition Recommended Action

int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-66

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Block parameter Function
(Operator) is set to cos + jsin
(complex exponential of the input).

Set Function to a value other than
cos + jsin.

Block parameter Approximation
method (ApproximationMethod) is
not set to None.

Set Approximation method to
None.

Check
Trigonometry
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

Fix the listed block inport or outport.

6-67

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

An unsupported data type is specified
for an input or output port.

Modify the port data type to be one
of the following: double, single,
int8, uint8, int16, uint16, int32,
or uint32.

Input and output ports do not have
the same data type.

Modify the port data types to match.

MinMax blocks must have at least
two inports.

Reconfigure the block to have at least
two inports.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check MinMax
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-68

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check
Rounding
Function
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double or single, .If the
block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

6-69

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Reshape
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

6-70

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Sign
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

6-71

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block inputs and outports do not
have the same data type.

Fix the listed block inport or outport.

Block parameter Function
(Operator) is not set to sqrt or
signedSqrt.

Set block parameter Function to
sqrt or signedSqrt.

Block parameter Output signal
type (OutputSignalType) is set to
complex.

Set block parameter Output signal
type (OutputSignalType) to auto or
real.

Block inputs and outports data types
are not single or double.

Fix the listed block inport or outport.

Check Sqrt
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

6-72

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-73

6 Model Advisor Checks

Check usage of Signal Attributes blocks
Check for usage of Signal Attributes blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Signal Attributes blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Block parameter Input and output
to have equal (ConvertRealWorld)
is not set to Real World Value
(RWV).

Set Input and output to have
equal to Real World Value (RWV).

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check
Data Type
Conversion
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-74

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Data
Type Duplicate
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-75

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block parameter Output
(ConversionOutput) is not set
to Signal copy.

Set Output to Signal copy.Check Signal
Conversion
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

6-76

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block parameter Data type for
width (ProbeWidthDataType) is set
to boolean.

Set block parameter Data type
for width to any data type except
boolean.

Block parameter Data type
for signal dimensions
(ProbeDimensionsDataType) is
set to boolean.

Set block parameter Data type for
signal dimensions to any data type
except boolean.

Block parameter Data
type for sample time
(ProbeSampleTimeDataType) is
not set to single or double.

Set block parameter Data type for
sample time to single or double.

Check Probe
blocks

6-77

6 Model Advisor Checks

Subcheck Condition Recommended Action

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Fix the listed block inport or outport.

6-78

Simulink® Code Inspector™ Checks

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-79

6 Model Advisor Checks

Check usage of Logical and Bit Operations blocks
Check for usage of Logical and Bit Operations blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Logical and Bit Operations blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The data type of a block outport is
not either an enumerated type with
default value 0, or boolean.

Modify the outport data type to be
either an enumerated type with
default value 0, or boolean.

Block input ports do not have the
same data type.

Modify the input ports to have the
same data type.

Block parameter Relational
operator (Operator) is set to an
unsupported value: isInf, isNaN, or
isFinite.

Set Relational operator to a
supported value: <=, ==, >=, ~=, <, or
>.

Check
Relational
Operator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

6-80

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Logical Operator block outport is not
boolean or uint8.

Modify the data type of the outport to
boolean or uint8.

Logical Operator blocks must have at
least two inports, except in the case
of the NOT operator.

Reconfigure the block to have at least
two inports.

Block input ports do not have the
same data type.

Configure the input ports to have the
same data type.

Check Logic
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or

Fix the listed block inport or outport.

6-81

6 Model Advisor Checks

Subcheck Condition Recommended Action

Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-82

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

With Number of input
ports(NumInputPorts) set to 1
and Operator(logicop) set to AND,
OR, NAND, NOR, or XOR, the inport data
type is not a scalar.

Configure the inport data type to be
a scalar.

Check Bitwise
Operator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type int8, uint8, int16,
uint16, int32, uint32, or
boolean. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Fix the listed block inport or outport.

6-83

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Diagnostic for out of range shift
value (DiagnosticForOORShift) is
not set to Error.

Set Diagnostic for out of range
shift value to Error.

Binary points to shift
(BinPtShiftNumber) is not set
to 0.

Set Bits points to shift to 0.

Bits to shift: Number
(BitShiftNumber) is not within
the allowable range of the inport data
type.

Enter a Bits to shift: Number that
is within the allowable range of the
inport data type.

Bits to shift: Source
(BitShiftNumberSource) is set
to Input port and Bits to shift:
Direction (BitShiftDirection)
is set to Bidirectional when the
source of Inport 2 either:

• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 2 is not a Constant block or
have a constant sample time.

Check
ArithShift
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

Fix the listed block inport or outport.

6-84

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-85

6 Model Advisor Checks

Check usage of Lookup Tables blocks
Check for usage of Lookup Table blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Lookup Table blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the input and output ports to
have the same data type.

Input or output port is not a scalar. Configure the listed input and output
ports to be scalars.

Block parameter Number
of table dimensions
(NumberOfTableDimensions) is
not set to 1 or 2.

Set Number of table dimensions
to 1 or 2.

Block parameter Interpolation
method (InterpMethod) is not set to
Linear.

Set Interpolation method to
Linear.

Block parameter Extrapolation
method (ExtrapMethod) is not set to
Clip or Linear.

Set Extrapolation method to Clip
or Linear.

Block parameter Index search
method (IndexSearchMethod) is not
set to Binary search.

Set Index search method to Binary
search.

Block parameter Begin
index search using
previous index result
(BeginIndexSearchUsingPreviousIndexResult)
is selected (set to on).

Clear the Begin index search
using previous index result
parameter.

Check Lookup
Table blocks

6-86

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Block parameter Support tunable
table size in code generation
(SupportTunableTableSize) is
selected (set to on).

Clear the Support tunable table
size in code generation parameter.

Block parameter Remove
protection against out-of-range
input in generated code
(RemoveProtectionInput) is
cleared (set to off).

Select the Remove protection
against out-of-range input in
generated code parameter.

Block parameter Saturate
on integer overflow
(SaturateOnIntegerOverflow)
is selected (set to on).

Clear the Saturate on integer
overflow parameter.

Block parameter Fraction > Data
Type (FractionDataTypeStr) is not
set to double or single.

Set Fraction > Data Type to double
or single.

Block parameter Table data (Table)
is empty, is nonfinite, has a MATLAB
structure as a value, is complex, has
two or more dimensions, or specifies
the range (:) operator.

Fix the Table data setting.

Block parameter Breakpoints
1 (sForDimension1) is empty, is
nonfinite, has a MATLAB structure
as a value, is complex, has two or
more dimensions, or specifies the
range (:) operator.

Fix the Breakpoints 1 setting.

Block parameter Breakpoints 2
(BreakpointsForDimension2) is
empty, is nonfinite, has a MATLAB
structure as a value, is complex, has
two or more dimensions, or specifies
the range (:) operator.

Fix the s 2 setting.

6-87

6 Model Advisor Checks

Subcheck Condition Recommended Action

Block parameter s 1
(sForDimension1DataTypeStr)
is not using the same data type as
the block input.

Modify the data types to match.

Block parameter s 2
(sForDimension2DataTypeStr)
is not using the same data type as
the block input.

Modify the data types to match.

Block parameter Table data
(TableDataTypeStr) is not using the
same data type as the block output.

Modify the data types to match.

Block parameter
Intermediate Results
(IntermediateResultsDataTypeStr)
is not using the same data type
as the block output.

Modify the data types to match.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
IIf the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

Fix the listed block inport or outport.

6-88

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-89

6 Model Advisor Checks

Check usage of User-Defined Function blocks
Check for usage of User-Defined Function blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in User-Defined Function blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The S-function was not created using
the Legacy Code Tool.

If possible, create the S-function
using the Legacy Code Tool, or
explore alternatives for including the
code in the model.

An S-function argument is neither a
scalar nor a vector of fixed dimension.

Modify the S-function such that
arguments are scalars or vectors of
fixed dimension.

The Legacy Code Tool
S-function specifies a
InitializeConditionsFcnSpec,
StartFcnSpec, or
TerminateFcnSpec, rather than
an OutputFcnSpec.

Modify the S-function configuration
to specify an OutputFcnSpec.

The S-function has more than one
dwork.

Modify the S-function configuration
to specify one dwork.

Check
S-Function
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

6-90

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-91

6 Model Advisor Checks

Check usage of Ports and Subsystems blocks
Check for usage of Ports and Subsystems blocks that might impact
compatibility with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Ports and Subsystems blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The signal entering the enable port is
not of data type boolean.

Fix the signal data type.

Block parameter Show output port
(ShowOutputPort) is selected.

Clear the parameter Show output
port.

The Enable Port block is located at
the root level of the model.

Remove or relocate the Enable Port
block.

The signal entering the Enable Port
of the parent subsystem:
• Is from a Constant block.

• Has a constant sample time.

Modify the model so that the signal
entering the Enable Port of the
parent subsystem:
• Is not from a Constant block.

• Does not have a constant sample
time.

Check Enable
Port blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

Fix the listed block inport or outport.

6-92

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

The Model block cannot have
variants. Block parameter Enable
variants (Variant) is selected (set
to on).

Clear the Enable variants
parameter.

Check Model
Reference
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

6-93

6 Model Advisor Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Auto.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-94

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

The subsystem is not one of the
following:
• Virtual

• Enabled

• Function-Call

• If Action

• Inlined Atomic

• Triggered

If possible, reconfigure the subsystem
to be either virtual (clear the
Subsystem block parameter Treat as
atomic unit), or an inlined atomic,
enabled, function-call, if action, or
triggered subsystem. Alternatively,
wrap the subsystem in a Model block,
or explore other implementation
options.

For nonvirtual subsystems,
Function packaging
(RTWSystemCode) is not set to
Inline.

Set Function packaging to Inline.

Check
Subsystem
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

Fix the listed block inport or outport.

6-95

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Action
Subsystem
blocks

Action subsystem contains model
reference blocks and/or conditional
subsystems.

Reconfigure the subsystem so
that it does not contain model
reference blocks and/or a conditional
subsystems.

In the parent subsystem, the signal
entering the trigger port is not a
scalar.

Configure the signal entering the
trigger port of the parent subsystem
to be scalar.

In the parent subsystem, the signal
entering the trigger port is not a
boolean data type when Trigger
type (TriggerType) isrising,
falling, or either.

Configure the signal entering the
trigger port of the parent subsystem
to be boolean.

Show output port
(ShowOutputPort) is selected.

Clear Show output port.

Block is at the root diagram of
the model with Trigger type
(TriggerType) set to rising,
falling, or either.

Do one of the following:
• Configure the model so that the
trigger block is not at the root of
the model.

• Configure the model so that
Trigger type is function-call.

Check Trigger
Port blocks

6-96

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

States when enabling
(StatesWhenEnabling) is set to
inherit.

Set States when enabling to held
or reset.

The signal entering the Trigger Port
of the parent subsystem:
• Is from a Constant block.

• Has a constant sample time.

Modify the model so that the signal
entering the Trigger Port of the
parent subsystem:
• Is not from a Constant block.

• Does not have a constant sample
time.

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

Fix the listed block inport or outport

6-97

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Check Action
Port blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

Fix the listed block inport or outport.

6-98

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Block destination is a terminator
block or an empty action subsystem.

Modify the model so that the block
destination is not a terminator block
or an empty action subsystem.

Source of Inport 1 either:
• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 1 is not a Constant block or
have a constant sample time.

Check If blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

Fix the listed block inport or outport.

6-99

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

The Number of iterations
(numberOfIterations) is not set to 1.

Set the Number of iterations to 1.Check
Function-Call
Generator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

Fix the listed block inport or outport.

6-100

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Case conditions (CaseConditions)
has a range of values for the input.

Configure Case conditions so that
the input does not have a range of
values.

Block destination is a terminator
block or an empty action subsystem.

Modify the model so that the block
destination is not a terminator block
or an empty action subsystem.

Source of Inport 1 either:
• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 1 is not a Constant block or
have a constant sample time.

Check
SwitchCase
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

Fix the listed block inport or outport.

6-101

6 Model Advisor Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-102

Simulink® Code Inspector™ Checks

Check usage of Discontinuities blocks
Check for usage of Discontinuities blocks that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Discontinuities blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

Input and output ports do not have
the same data type.

Modify the port data types to match.

Block parameter Upper limit
(UpperLimit) is empty, is nonfinite,
has a MATLAB structure as a
value, is complex, has two or more
dimensions, or specifies the range (:)
operator.

Fix the Upper limit setting.

Block parameter Lower limit
(LowerLimit) is empty, is nonfinite,
has a MATLAB structure as a
value, is complex, has two or more
dimensions, or specifies the range (:)
operator.

Fix the Lower limit setting.

Block parameter UpperLimitSource
is not set to dialog.

Use the block parameter Upper
limit rather than input ports to
specify the upper limit.

Block parameter LowerLimitSource
is not set to dialog.

Use the block parameter Lower
limit rather than input ports to
specify the lower limit.

Block parameter Integer rounding
mode (RndMeth) is set to an
unsupported value.

Set Integer rounding mode to
Zero, Floor, or Ceiling.

Check Saturate
blocks

6-103

6 Model Advisor Checks

Subcheck Condition Recommended Action

Violates a constraint that applies to
all blocks:

• Block inport or outport is not of
data type double, single, int8,
uint8, int16, uint16, int32, or
uint32. If the block supports
buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix..

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

Fix the listed block inport or outport.

6-104

Simulink® Code Inspector™ Checks

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-105

6 Model Advisor Checks

Check usage of Sinks blocks
Check for usage of Sinks blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Sinks blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block cannot specify
variable-dimension signals. Block
parameter Variable-size signal
(VarSizeSig) is set to Yes.

Set Variable-size signal to No.

Signal type
(NumberOfTableDimensions) is set to
complex.

.Set Signal type to real or auto.

Sampling mode (SamplingMode) is
set to Frame based.

Set Sampling mode to Sample
based or auto.

Root level outport Initial output
(InitialOutput) is not [].

Set root level outport Initial output
to [].

Source of initial output value
(SourceOfInitialOutputValue) is
not set to Dialog.

Set Source of initial output value
to Dialog.

Check Outport
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

6-106

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-107

6 Model Advisor Checks

Subcheck Condition Recommended Action

Block is connected to a model
reference block.

Modify the model so that the model
reference block is not connected to a
terminator block.

Check
Terminator
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

Fix the listed block inport or outport.

6-108

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-109

6 Model Advisor Checks

Check usage of Discrete blocks
Check for usage of Discrete blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Discrete blocks.

Results and Recommended Actions

Subcheck Condition Recommended Action

The block state does not have storage
class Auto. Values other than Auto
require use of storage classes, which
are not supported for code inspection.

Modify the block such that its code
generation storage class is set to
Auto. If the block state name does not
resolve to a signal object, set Storage
Class in the State Attributes tab
of the block parameter dialog box to
Auto. If the block state name does
resolve to a signal object, set the
CoderInfo.StorageClass property
of the signal object to Auto.

Block parameter Initial conditions
(X0) is empty, is nonfinite, has a
MATLAB structure as a value, is
complex, has two or more dimensions,
or specifies the range (:) operator.

Fix the Initial conditions setting.

Check Unit
Delay blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

Fix the listed block inport or outport.

6-110

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

6-111

6 Model Advisor Checks

Subcheck Condition Recommended Action

Input ports data types are not:
• single or double for non-reset
ports

• boolean for external reset ports

Modify the input ports data types to
be:
• single or double for non-reset
ports

• boolean for external reset ports

Inports and outports are not scalars. Modify the inport or outports to be
scalars.

Output ports data types are not
single or double.

Modify the output ports data types to
be single or double.

The input and output ports do not
have the same data type.

Modify the port data types to match.
The reset port data type does not
need to match the other input and
output data types.

Block parameter Integrator
method (IntegratorMethod) is not
set to one of the following:

• Integration: Forward Euler

• Integration: Backward Euler

• Integration: Trapezoidal

Set Integrator method to one of the
following:

• Integration: Forward Euler

• Integration: Backward Euler

• Integration: Trapezoidal

Block parameter Show state port
(ShowStatePort) is selected.

Clear Show state port.

Block parameter External reset
(ExternalReset) is set to none when
the source of Inport 2 either:

• Is a Constant block.

• Has a constant sample time.

Modify the model so that the source
of Input 2 is not a Constant block or
have a constant sample time.

Either or both block parameters
Upper saturation limit
(UpperSaturationLimit) and
Lower saturation limit
(LowerSaturationLimit):

Set both theUpper saturation limit
and the Lower saturation limit
to a one dimensional, non-complex,
finite value.

Check Discrete
Integrator
blocks

6-112

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

• Are empty, non-finite, or complex.

• Use MATLAB structures.

• Have two or more dimensions.

• Specify the : operator.

Block is inside a conditional
subsystem.

Modify the model so that the Discrete
Integrator block is not inside a
conditional subsystem.

Violates a constraint that applies to
all blocks:

• If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

Fix the listed block inport or outport.

6-113

6 Model Advisor Checks

Subcheck Condition Recommended Action

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• “Block Constraints — Alphabetical List” on page 5-5

• “Supported Blocks — By Category” on page 5-49

6-114

Simulink® Code Inspector™ Checks

Check usage of Stateflow blocks
Check for usage of Stateflow blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow blocks.

Results and Recommended Actions

Check Condition Recommended Action

Function packaging
(RTWSystemCode) is not set to
Inline.

Set Function packaging to Inline.Check
Stateflow
blocks

Violates a constraint that applies to
all blocks:

• Block inport or outport is not
of data type double, single,
int8, uint8, int16, uint16,
int32, uint32, or boolean, or
Enumerated with default value 0.
If the block supports buses:

- Port is not a bus for which the
elements (potentially including
other buses) meet the data type
constraint.

- Port has arrays of buses.

- Port has buses with elements
that are arrays of buses.

• Block name contains character
string */ or /*, or ends with the
character *.

• Block inport or outport is complex.

Fix the listed block inport or outport.

6-115

6 Model Advisor Checks

Check Condition Recommended Action

• Block inport or outport is not a
scalar, vector, or 2D matrix.

• Block inport or outport uses
frame-based signals.

• Block output custom signal storage
class is not set to Unstructured.

• Block has constant (Inf) sample
time and an outport has been
testpointed.

• Block output signal storage class
is not set to Auto when the block
has constant (Inf) sample time.

See Also

• MATLAB Chart

• State Transition Table

• Truth Table

6-116

Simulink® Code Inspector™ Checks

Check usage of Stateflow charts
Check for usage of Stateflow charts that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow charts.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
control flows
do not have
cycles

Chart contains control flow cycles,
which are not supported for code
inspection.

Configure the chart so that it does
not contain control flow cycles.

Check usage
of Stateflow
object palette

The chart contains one or more of the
following objects:
• States

• Subcharts

• Graphical functions

• MATLAB functions

• Truth Tables

• Simulink functions

Configure the chart so that it does
not contain the unsupported objects.

Check that
all charts
specify ’C’ as
their action
language

Chart property Action Language is
not set to C.

Set Action Language to C.

Check that all
charts specify
’Inherited’ as
their update
method

Chart property Update method is
not set to Inherited.

Set Update method to Inherited.

6-117

6 Model Advisor Checks

Subcheck Condition Recommended Action

Check that no
charts execute
at initialization

Chart property Execute (enter)
Chart at Initialization is selected
(set to on).

Clear the chart property Execute
(enter) Chart at Initialization
parameter.

Check that no
charts specify
saturation
on overflow
for integer
operations

Chart property Saturate on integer
overflow is selected (set to on).

Clear the chart property Saturate
on integer overflow parameter.

Check that no
charts support
variable-size
arrays

Chart property Support
variable-size arrays is selected (set
to on).

Clear the chart property Support
variable-size arrays parameter.

Check that
control flows
are structured

Chart contains unstructured control
flows, which are not supported for
code inspection.

Configure the chart so that it does not
contain unstructured control flows.

Check that
all control
flows have
unique default
transitions

Control flow has more than 1 default
transition.

Configure the chart so that it has 1
default transition.

6-118

Simulink® Code Inspector™ Checks

Check usage of Stateflow transitions
Check for usage of Stateflow transitions that might impact compatibility
with Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow transitions.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
transitions
do not have
unsupported
operations

Transition uses an operation that is
not:
• := or =

• + , += , -, or -=

• * , *=, / or /=

• &, && or &=

• |, || or |=

• <<, >>, ++ or --

• cast()

• ^ or ^=

• %% or <

• <= or ==

• ~= or !=

• <> or >

• >= or ~

Modify the chart so that transition
uses only supported operations.

Check that no
transitions
access
context-sensitive
constants

Transition uses context-sensitive
constants, which is not supported for
code inspection.

Modify the transition to avoid using
context-sensitive constants.

6-119

6 Model Advisor Checks

Subcheck Condition Recommended Action

Check that
no transitions
access custom
data

Transition accesses custom data,
which is not supported for code
inspection.

Modify the transition to avoid
accessing custom data.

Check that no
transitions
have event
triggers

Transition has an event trigger,
which is not supported for code
inspection.

Modify the transition to avoid using
an event trigger.

Check that
transitions
do not have
transition
actions

Transitions has a transition action,
which is not supported for code
inspection.

Modify the transition to avoid using
a transition action.

Check that no
transitions
contain
a binary
operator whose
operands are
of mixed data
type

Transition contains a binary operator
of mixed data type operands, which
is not supported for code inspection.

Modify the chart to avoid using
binary operators with operands of
mixed data type.

Check that
no transitions
access time (t)

Transitions accesses time, which is
not supported for code inspection.

Modify the transition to avoid
accessing time.

See Also

• “Graphical Expression of Modal Logic”

• “Transitions”

• “Transition Connections”

• “Default Transitions”

6-120

Simulink® Code Inspector™ Checks

Check usage of Stateflow junctions
Check for usage of Stateflow junctions that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow junctions.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that
non-terminating
junctions have
exactly one
unconditional
exiting
transition

Non-terminating junction does not
have exactly one unconditional
exiting transition. A single
unconditional exiting transition
prevents backtracking and transition
shadowing.

Modify junction so that it has one
unconditional exiting transition.

Check that
the chart uses
no history
junctions

Chart contains a history junction. Modify chart so that it does not
contain a history junction.

Check that
unconditional
transitions
execute last
in execution
order

Unconditional transition is not last
in order of execution.

Modify chart so that the
unconditional transition is the
last in order of execution. This
prevents transition shadowing.

See Also

• “Connective Junctions”

• “History Junctions”

6-121

6 Model Advisor Checks

Check usage of Stateflow data
Check for usage of Stateflow data that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow data.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check that the
chart uses no
constants

Chart uses constants. Modify chart so that it does not
access constants.

Check that the
chart uses no
data stores

Chart uses data stores. Modify chart so that it does not
access data stores.

Check that
Stateflow
data is of a
supported data
type

Chart data types are not builtin,
enumerated, or bus. If the chart data
type is a bus, the data is an array of
buses or has elements that are arrays
of buses.

Modify chart data types to be
builtin, enumerated, or bus. If the
chart data type is bus, update the
chart so that the data is not an array
of buses or have elements that are
arrays of buses.

Check that the
chart uses only
data with no
initial values

Chart use data with initial values. Modify chart sot that it does not use
data with initial values.

Check that the
chart uses no
local data

Chart uses local data. Modify chart so that it does not use
local data.

Check that the
chart uses no
parameters

Chart uses parameters. Modify chart so that it does not use
parameters.

6-122

Simulink® Code Inspector™ Checks

Subcheck Condition Recommended Action

Check that the
chart uses only
non-complex
data

Chart uses complex data. Modify chart so that it does not use
complex data.

Check that the
chart uses only
scalar data

Chart uses non-scalar data. Modify chart so that it does not use
non-scalar data.

See Also
“Data Specification”

6-123

6 Model Advisor Checks

Check usage of Stateflow events
Check for usage of Stateflow events that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports incompatibilities it finds
in Stateflow events.

Results and Recommended Actions

Check Condition Recommended Action

Event scope is not Output. Modify model so that event scope is
Output.

Check
Stateflow
events Event trigger is not function-call. Modify model so that event trigger is

function-call

See Also
“Input and Output Events”

6-124

Simulink® Code Inspector™ Checks

Check usage of root Outport blocks
Check for usage of root Outport blocks that might impact compatibility with
Simulink Code Inspector.

Description
This check updates the model diagram and reports root Outport block usage
incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Verify sample
times

One or more root Outport blocks
specify a constant (Inf) sample time.
This will cause the model functions
to fail validation, because the root
outport assignment is moved to the
model initialize function.

Set the sample times of the
root Outport blocks to explicit,
nonconstant sample times.

Verify root
Outports pass
buses to parent
models as
structures

One or more root Outport blocks pass
a bus to the parent model without
passing the bus as a structure. This
might cause Simulink software to
insert a hidden Signal Conversion
block in the parent model, which is
not supported for code inspection.

For each instance, open the
Outport block dialog box and
select the parameter Output as
nonvirtual bus in parent model
(BusOutputAsStruct).

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-125

6 Model Advisor Checks

Check usage of buses
Check for usage of buses that might impact compatibility with Simulink
Code Inspector.

Description
This check updates the model diagram and reports bus usage incompatibilities.

Results and Recommended Actions

Subcheck Condition Recommended Action

Check for
automatic
conversion
between
virtual to
non-virtual
buses

Simulink software performed an
automatic conversion from a virtual
to a nonvirtual bus at the interface
of one or more listed blocks. This
creates a hidden Signal Conversion
block, which is not supported for code
inspection.

Modify the model to use nonvirtual
buses at the interfaces of the listed
blocks.

Verify that
no blocks in
the model
perform an
unsupported
operation on a
bus

In the model, a nonvirtual block
operates on a virtual bus, or a Unit
Delay block operates on a bus (virtual
or nonvirtual).

Modify the model so that nonvirtual
blocks operate on a virtual buses,
and Unit Delay blocks operate
onbuses. This action simplifies bus
processing to promote traceability
and readability of generated code.

See Also
“Other Modelwide Attribute Constraints” on page 4-18

6-126

7

Simulink Code Inspector
Dialog Box Parameters

7 Simulink® Code Inspector™ Dialog Box Parameters

Simulink Code Inspector Dialog Box
The Simulink Code Inspector dialog box with parameters at their initial
default settings appears as follows.

7-2

Simulink Code Inspector Dialog Box

In this section...

“Simulink Code Inspector Dialog Box Overview” on page 7-4

“This is the top of the model hierarchy” on page 7-5

“Inspect all referenced models” on page 7-6

“Omit model from code inspection if it fails compatibility check” on page 7-7

“Generate code before code inspection” on page 7-8

“Code placement” on page 7-9

“Code folder” on page 7-10

“Report folder” on page 7-11

7-3

7 Simulink® Code Inspector™ Dialog Box Parameters

Simulink Code Inspector Dialog Box Overview
Control code inspection and compatibility checking for a model.

To get help on an option

1 Right-click the option’s text label.

2 Select What’s This from the popup menu.

See Also

• “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-4

Simulink Code Inspector Dialog Box

This is the top of the model hierarchy
Specify whether the model being configured for code inspection is the top
model in the model reference hierarchy.

Settings
Default: on

On
Code inspection (and code generation if requested) uses a top model
target.

Off
Code inspection (and code generation if requested) uses a model
reference target.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setTopModel.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-5

7 Simulink® Code Inspector™ Dialog Box Parameters

Inspect all referenced models
Specify whether model compatibility checking and code inspection should be
performed for descendants of this model in the model reference hierarchy.

Settings
Default: off

On
Model compatibility checking and code inspection are performed for
descendants of this model in the model reference hierarchy.

Off
Model compatibility checking and code inspection are performed only
for this model.

Dependencies
Selecting Inspect all referenced models changes the displayed name for
the option Omit model from code inspection if it fails compatibility
check to Omit models from code inspection if they fail compatibility
checks, and changes the displayed name of the button Check this model
to Check all models.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setFollowModelLinks.

See Also

• “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-6

Simulink Code Inspector Dialog Box

Omit model from code inspection if it fails
compatibility check
Specify whether code inspection terminates if a model fails compatibility
checking.

Settings
Default: off

On
Code inspection terminates if a model fails compatibility checking. Code
generation (if requested) also does not occur.

Off
Code inspection does not terminate if a model fails compatibility
checking.

Dependencies
Selecting the option Inspect all referenced models changes the displayed
name for this option from Omit model from code inspection if it fails
compatibility check to Omit models from code inspection if they fail
compatibility checks.

Command-Line Information
The equivalent Simulink Code Inspector configuration
method for selecting or clearing this option is
slci.Configuration.setTerminateOnIncompatibility.

See Also

• “Check Model Compatibility Using the Graphical User Interface”

• “Check Model Compatibility Using the Command-Line Interface”

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-7

7 Simulink® Code Inspector™ Dialog Box Parameters

Generate code before code inspection
Specify whether to generate code before code inspection.

Settings
Default: off

On
Generates model code at the beginning of code inspection.

Off
Uses previously generated model code for code inspection.

Dependencies
Selecting Generate code before code inspection disables the Code
placement and Code folder options, and changes the displayed name of the
button Inspect code to Generate and inspect code.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setGenerateCode.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-8

Simulink Code Inspector Dialog Box

Code placement
Specify code placement for code inspection.

Settings
Default: Embedded Coder default

Embedded Coder default
Specifies that previously generated code resides in the default folders
created by code generation.

Single folder
Specifies that previously generated code has been repackaged to reside
in a single, user-defined folder.

Dependencies

• Clearing the option Generate code before code inspection enables
the Code placement option.

• Selecting the value Single folder for Code placement enables the Code
folder parameter.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setCodePlacement.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-9

7 Simulink® Code Inspector™ Dialog Box Parameters

Code folder
Specify a folder containing previously generated code for code inspection.

Settings
Default: ''

Specifies the path to a folder containing previously generated code to be
inspected. Use this parameter only if you are inspecting generated code that
has been repackaged to reside in a single, user-defined folder.

Dependencies
This parameter is enabled by setting the value of the Code placement
parameter to Single folder.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setCodeFolder.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-10

Simulink Code Inspector Dialog Box

Report folder
Specify a report folder for code inspection.

Settings
Default: Subfolder slprj/slci relative to the location of the model.

Specifies the path to a folder in which code inspection should place code
inspection report artifacts.

Command-Line Information
The equivalent Simulink Code Inspector configuration method for selecting or
clearing this option is slci.Configuration.setReportFolder.

See Also

• “Inspect Code Using the Graphical User Interface”

• “Inspect Code Using the Command-Line Interface”

7-11

	toc
	Function Reference
	Code Inspection
	Model Compatibility Checking

	Class Reference
	Code Inspection

	Functions — Alphabetical List
	Model Configuration Constraints
	About Model Configuration Constraints
	Simulink Configuration Parameter Constraints
	Solver
	Data Import/Export
	Optimization
	Optimization: Signals and Parameters
	Diagnostics: Data Validity
	Diagnostics: Connectivity
	Diagnostics: Model Referencing
	Hardware Implementation
	Code Generation: General
	Code Generation: Comments
	Code Generation: Symbols
	Code Generation: Custom Code
	Code Generation: Interface
	Code Generation: Verification
	Code Generation: Code Style
	Code Generation: Data Type Replacement
	Code Generation: Not in GUI

	Other Modelwide Attribute Constraints
	Supported Functions and Operations in Code Replacement Libraries

	Block Constraints
	About Block Constraints
	Block Constraints — Alphabetical List
	All Blocks
	Abs
	Action Port
	Bitwise Operator
	Bus Assignment
	Bus Creator
	Bus Selector
	Constant
	Data Store Memory
	Data Store Read
	Data Store Write
	Data Type Conversion
	Data Type Duplicate
	Data Type Propagation
	Discrete-Time Integrator
	Demux
	DocBlock
	Enable Port
	From
	Function-Call Generator
	Gain
	Goto
	Ground
	If
	Inport
	Logical Operator
	1-D Lookup Table, 2-D Lookup Table, n-D Lookup Table (1 or 2-D)
	Math Function
	Merge
	MinMax
	Model
	Model Info
	Multiport Switch
	Mux
	Outport
	Probe
	Product
	Relational Operator
	Reshape
	Rounding Function
	Saturation
	Selector
	S-Function
	Shift Arithmetic
	Sign
	Signal Conversion
	Signal Specification
	Sqrt
	Stateflow
	Subsystems
	Sum, Add, Subtract
	Switch
	Switch Case
	Terminator
	Trigger
	Trigonometric Function
	Unit Delay
	Vector Concatenate

	Supported Blocks — By Category
	Commonly Used Blocks
	Discontinuity Blocks
	Discrete Blocks
	Logic and Bit Operation Blocks
	Lookup Tables
	Math Operation Blocks
	Model-Wide Utilities
	Port & Subsystem Blocks
	Signal Attribute Blocks
	Signal Routing Blocks
	Sink Blocks
	Source Blocks
	User-Defined Functions

	Model Advisor Checks
	Simulink Code Inspector Checks
	Simulink Code Inspector Checks Overview
	See Also

	Check code generation settings
	Description
	Results and Recommended Actions
	See Also

	Check data import/export settings
	Description
	Results and Recommended Actions
	See Also

	Check diagnostic settings
	Description
	Results and Recommended Actions
	See Also

	Check hardware implementation settings
	Description
	Results and Recommended Actions
	See Also

	Check optimization settings
	Description
	Results and Recommended Actions
	See Also

	Check solver settings
	Description
	Results and Recommended Actions
	See Also

	Check for unconnected objects in the model
	Description
	Results and Recommended Actions
	See Also

	Check system target file setting
	Description
	Results and Recommended Actions
	See Also

	Check function specification setting
	Description
	Results and Recommended Actions
	See Also

	Check for Stateflow machine data
	Description
	Results and Recommended Actions
	See Also

	Check for Stateflow machine events
	Description
	Results and Recommended Actions
	See Also

	Check conditional input branch execution setting
	Description
	Results and Recommended Actions
	See Also

	Check for unsupported blocks
	Description
	Results and Recommended Actions
	See Also

	Check storage class for workspace variables
	Description
	Results and Recommended Actions
	See Also

	Check for sample times in the model
	Description
	Results and Recommended Actions
	See Also

	Check for Signal Conversion blocks automatically inserted on sig
	Description
	Results and Recommended Actions
	See Also

	Check for usage of fixed-point instrumentation
	Description
	Results and Recommended Actions
	See Also

	Check for root Outport blocks being conditionally assigned
	Description
	Results and Recommended Actions
	See Also

	Check for usage of synthesized local data stores
	Description
	Results and Recommended Actions
	See Also

	Check loop unrolling threshold setting
	Description
	Results and Recommended Actions
	See Also

	Check usage of global data stores
	Description
	Results and Recommended Actions
	See Also

	Check destinations of If and Switchcase blocks
	Description
	Results and Recommended Actions
	See Also

	Check for root Outport blocks that have non-auto storage class
	Description
	Results and Recommended Actions
	See Also

	Check usage of Sources blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Routing blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Math Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Signal Attributes blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Logical and Bit Operations blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Lookup Tables blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of User-Defined Function blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Ports and Subsystems blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Discontinuities blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Sinks blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Discrete blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow charts
	Description
	Results and Recommended Actions

	Check usage of Stateflow transitions
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow junctions
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow data
	Description
	Results and Recommended Actions
	See Also

	Check usage of Stateflow events
	Description
	Results and Recommended Actions
	See Also

	Check usage of root Outport blocks
	Description
	Results and Recommended Actions
	See Also

	Check usage of buses
	Description
	Results and Recommended Actions
	See Also

	Simulink Code Inspector Dialog Box Parameters
	Simulink Code Inspector Dialog Box
	Simulink Code Inspector Dialog Box Overview
	To get help on an option
	See Also

	This is the top of the model hierarchy
	Settings
	Command-Line Information
	See Also

	Inspect all referenced models
	Settings
	Dependencies
	Command-Line Information
	See Also

	Omit model from code inspection if it fails compatibility check
	Settings
	Dependencies
	Command-Line Information
	See Also

	Generate code before code inspection
	Settings
	Dependencies
	Command-Line Information
	See Also

	Code placement
	Settings
	Dependencies
	Command-Line Information
	See Also

	Code folder
	Settings
	Dependencies
	Command-Line Information
	See Also

	Report folder
	Settings
	Command-Line Information
	See Also

